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Abstract

Personal automobile emissions are a major source of urban air pollution. Many
regional and local governments across the United States (US), Europe, and Asia
have inspection and maintenance (I/M) programs designed to reduce pollution from
personal transportation. But there is little empirical evidence directly linking man-
dated inspections, maintenance, and local air pollution levels. To test for a link, we
estimate the contemporaneous effect of inspections on local air quality in the US
state of California. We use day-to-day, within-county variation in the number of
vehicles repaired and re-certified after failing an initial emissions inspection, with
individual-level data from 1998–2012 from California’s inspection program. Addi-
tional re-inspections of older vehicles with inferior emissions technology (pre-1985
model year) reduce local carbon monoxide, nitrogen oxide, and particulate matter
levels, while re-inspections of newer vehicles with more modern engine technology
have no economically significant effect on air pollution. This suggests emissions
inspections have become less effective at reducing local air pollution as more high-
polluting vehicles from the 1970s and 1980s leave the road, and provides an example
of how the social efficiency of programs can change under improving technologies.
We also estimate the importance of station quality, using a metric devised for Cal-
ifornia’s new STAR certification program. We show re-inspections of older vehicles
conducted by low quality inspection stations do not change air pollution, while in-
spections at high quality stations have a moderate effect on pollution concentrations,
which suggests the potential for ineffective monitoring at low quality inspection sta-
tions. We find little effect on ambient ozone levels, regardless of station quality or
vehicle age.
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cial Protection, ryan.sandler@cfpb.gov. We are grateful to Dan Hosken, Mark Jacobsen, Thomas Koch,
Devesh Raval, Joseph Shapiro and participants in the Economics Brownbag at the Federal Trade Com-
mission for helpful comments and suggestions. Any opinions in this paper are those of the authors and
do not necessarily reflect those of the Bureau of Consumer Financial Protection or the United States.
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1 Introduction

Automobile pollution has substantial impacts on health, and regulating ambient air pollu-

tion from automobile traffic is a public concern throughout the world.1 Despite regulatory

advancements and improvements in engine technology, motor vehicles remain responsible

for 75% of carbon monoxide (CO) emissions in the United States, and over 50% of ni-

trogen oxide (NOx) emissions.2 Governments in both developed and developing countries

have tried a number of policies to reduce pollution from personal automobiles. Improving

fuel standards can decrease emissions per mile driven, but such programs disproportion-

ally impact low-income households and decrease average road safety (Jacobsen, 2013a,b).

Driving restriction programs have varied success rates when it comes to actually reducing

local pollution (Davis, 2008; Wolff, 2014; Simeonova et al., 2018). Scrappage programs,

often referred to as “Cash for Clunkers,” can directly remove the dirtiest vehicles from the

road, but recent work shows that such programs have substantial problems with adverse

selection and may only slightly shift forward the timing of vehicle replacement (Sandler,

2012; Mian and Sufi, 2012; Li et al., 2013; Hoekstra et al., 2014). Inspection and mainte-

nance programs (I/M), the focus of this paper, attempt to limit tailpipe emissions through

regular inspections and repairs, without changing driving behavior or fleet composition.

Such programs are costly both to governments and individuals (Ando et al., 2000), are

subject to potential fraud (Oliva, 2015), and although mandated repairs of high-emitting

vehicles often show reduced tailpipe emissions in a testing environment, there exists no

large-scale analysis of how I/M programs affect local air pollution. Understanding the

effectiveness of I/M in practice is especially important in light of the recent emissions test

cheating scandal involving Volkswagen diesel vehicles in U.S. and Europe, where vehicles

recorded as passing EPA tests actually produced emissions far above allowable levels on

the road.3

We provide the first causal analysis of vehicle inspections and local air pollution, using

extensive Smog Check data from the state of California.4 We find an additional inspection-

driven repair of a faulty vehicle does reduce contemporaneous local air pollution. However,

we only find economically meaningful results from inspections of older (1985 and prior

model-year) vehicles that predate advances in emissions control technologies, suggesting

1See Currie and Walker (2011) and Knittel et al. (2016).
2Emissions data from http://www.epa.gov/airquality/peg_caa/carstrucks.html (accessed on-

line June 1, 2015). For discussion on automobile NOx regulation, see Fowlie et al. (2012).
3See http://www.nytimes.com/2015/09/23/business/international/

volkswagen-diesel-car-scandal.html?_r=0 (Accessed September 23, 2015).
4(Harrington et al., 2000) calculate cost-effectiveness of a similar inspection program in Arizona, but

do not link inspections to ambient air pollution levels.
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the benefits of I/M programs decline as engine technology improves. Further, we examine

a recent reform to California’s I/M program that incorporates measures of inspection sta-

tion quality. We find increasing station quality may help further reduce some pollutants,

but again only through inspections and repairs of faulty older cars that are a shrinking

share of the automobiles on the road.

To identify the effectiveness of inspection programs, we leverage the fact that although

the implementation of California’s overall inspection program is endogenous to air pollu-

tion, the timing of individual vehicle repairs—the mechanism through which inspections

should affect pollution—is random and exogenous. We use counts of final re-inspections

following a failed inspection to capture the intensity of I/M-related vehicle repairs. Con-

trolling for local weather effects and a battery of time and region fixed effects, we find

repairing cars that failed initial inspections reduces local CO and NOx levels in a statis-

tically and economically significant fashion in the period following the repairs. Repairing

and re-inspecting 1,000 older emissions technology vehicles decreases ambient CO by 26

parts per billion and ambient NOx by 1.9 parts per billion, about 7% of a standard devi-

ation for each pollutant. For scale, the average California county re-inspects 1,000 failing

vehicles of all ages every 12 days. Re-inspections of vehicles manufactured after 1985 have

much smaller effects on air pollution. This presents a case where the social efficiency of a

program changes as the relevant technology advances — potentially regulation-driven im-

provements in engine technology are making smog check programs, as currently designed,

less socially efficient with time.

California recently passed substantial reforms of inspection station requirements, hop-

ing to improve inspection reliability (Bureau of Automotive Repair, 2014). Under the

new “STAR” system, inspection and repair providers must pass certain quality criteria

before the state certifies them to inspect the most high-polluting vehicles.5 Understand-

ing how quality control of testing systems impacts air quality improvements is important

given prior findings that I/M programs are subject to gaming (Oliva, 2015). However,

testing the effectiveness of quality control programs is challenging due to confounding

factors including strategic customer and station responses to the rating system. To avoid

such problems, we use historic data to construct hypothetical STAR program measures

of station quality before the announcement of the policy, and test the relationship be-

tween ambient air pollution and re-inspections at what would be considered high-scoring

stations under the eventual STAR metrics. We find re-inspections of older vehicles at

5The STAR program also requires that newer vehicles with onboard monitoring computers be tested by
computer, rather than by direct tailpipe measurements. In addition, new regulations provide for heavier
penalties for stations that are found cheating, as well as for consumers who try to falsify an inspection.
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high quality stations reduce airborne levels of CO and NOx while re-inspections at low

quality stations yield no change in local air pollution levels. This result is consistent with

the theory that low quality stations allow vehicles to pass re-inspection without appro-

priate repairs. Much like our findings on the general effectiveness of I/M programs, we

find re-inspections of newer cars have little impact on air pollution, regardless of station

quality.

Finally, we use our empirical results to conduct two policy simulations. We first

simulate the eventual effectiveness of the STAR station quality control program, and

show that benefits of the more strict inspection system are likely to fade in the future.

We also simulate the impact of removing the Smog Check program entirely. We find that

the benefits of Smog Check fell rapidly between 2002 and 2009 as older vehicles left the

road, while costs remained relatively constant, being largely a function of the number of

inspections per year. Although the program would still pass a simple cost-benefit test in

2009, the trend suggests this will not continue indefinitely.

Beyond our focus on vehicle emissions, this paper relates to the broader literature

on the quality of regulatory enforcement. Inconsistent enforcement of regulations can

substantially hinder the effectiveness of regulatory programs. In a review of empirical

studies on the productivity of environmental monitoring, Gray and Shimshack (2011)

find that regular monitoring and enforcement of regulated facilities can reduce violations

both through improving regulated areas and deterring future violations in areas that are

not directly targeted. But if enforcement is lax, the regulator may appear “toothless,” re-

ducing the impact of regulation overall. Shimshack and Ward (2005) show that a regulator

having a strong reputation has large positive spillovers, and similarly, weak regulators may

have large negative spillovers, undermining compliance overall. Duflo et al. (2013) find

honest reporting and actual emissions from factories improve when auditors are assigned

at random, rather than being chosen by the factories and subject to potential conflicts

of interest. Muehlenbachs et al. (2016) show that, in the context of safety inspections

on oil rigs, greater enforcement (as proxied by a greater number of inspectors) improves

inspection outcomes and safety. But in the context of I/M programs, Oliva (2015) shows

corruption in can be substantial. Our finding that ineffective inspection stations do noth-

ing to improve air pollution supports prior work finding both that gaming is prevalent

in I/M programs, and that regulation is ineffective at improving environmental quality

when enforcement is weak.

Section 2 outlines the California Smog Check Program and the new STAR system.

Section 3 describes the Smog Check and pollution data. Section 4 describes our identifi-

cation technique and construction of ex ante STAR quality measures. Section 5 presents
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our estimates of how the Smog Check program changed local pollution levels, and section

6 uses these results to simulate the impact of the STAR program. Section 7 concludes.

2 Background on California’s Emissions Testing Pro-

gram

California provides an excellent backdrop for the study of tailpipe emissions programs.

Of the approximately 110 million registered automobiles in the United States in 2012,

almost 13 million were in California, more than any other single state.6 California has

a history of extensive automobile pollution regulation, and other states often adopt or

build off California regulations (Engel, 2015). Prompted by the federal 1977 Clean Air

Act Amendments, California began mandating biennial emissions inspections in 1984.

Current California law allows the Bureau of Automotive Repair (BAR) to mandate regular

measures of tailpipe emissions through “Smog Checks.” Most vehicles in California must

obtain a Smog Check every two years before renewing their annual vehicle registration.

If a vehicle displays emissions levels above the threshold for any regulated pollutant, the

owner must repair the vehicle and demonstrate passing levels in a later “re-inspection”

before registering it, thereby removing high-polluting vehicles from the fleet by inducing

repairs or forcing irreparable vehicles off the road. Emissions thresholds vary by the model

year of the vehicle in question, but are consistent over time and across the state.7 There

is also a group of exempt vehicles. These are: vehicles of 1975 model-year or older (which

represent less 2% of the 2009 share of vehicles in California according to a California

Air Resources Board model), hybrid and electric vehicles, motorcycles, diesel-powered

vehicles, and large natural-gas powered trucks.

The California Smog Check program is a decentralized system. Privately-owned repair

shops conduct vehicle inspections and, should the vehicle fail initial inspection, these

shops make the necessary repairs to bring cars to passing status. Early research found

the first incarnation of the Smog Check program was rife with problems that decreased

6Bureau of Transportation Statistics, 2014 State Transportation Statistics data, Table 5-1. Available
online at http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/state_

transportation_statistics/state_transportation_statistics_2014/index.html/chapter5/

table5-1.
7More precisely, there are two different test procedures conducted in the state. Counties under the

“enhanced” program regime (discussed below) use the Accelerated Simulation Mode (ASM) test, which
uses a dynamometer or rolling road to simulate on-road conditions. Thresholds for the ASM test depend
on model year and vehicle weight. Other counties use the simpler Two Stage Idle (TSI) test, which
has thresholds that only depend on model year and does not measure NOx. Regardless of the test, the
standards do not change over time, and are the same in any county where the same test is conducted.
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or eliminated ambient air pollution benefits (Glazer et al., 1995; Hubbard, 1998), and

identified fraud by private station technicians as a major source of problems.

California passed the first major overhaul of the Smog Check program in 1994 in

response to the 1990 Clean Air Act Amendments. The state implemented an “Electronic

Transmission System” (ETS) to automatically send test results to the BAR, and created

an “enhanced” inspection regime for the most polluted areas of the state. In addition to

requiring improved testing equipment, the program began directing vehicles in enhanced

regions to specially certified stations authorized only to conduct tests but not make repairs.

To be clear, while the program refers to such vehicles as being “directed,” vehicle owners

are still able to choose which station inspects their vehicle. The directed status simply

limits the set of stations vehicle owners are permitted to choose. A vehicle is directed

for inspections in a testing cycle if a BAR statistical model flags it as meeting a “high

emitter profile,” and is directed for all follow-up inspections if it fails the initial inspection

with emissions greater than or equal to double the legal limits. The BAR also directs a

2% random sample of all vehicles registered in enhanced areas. The BAR directs 30-40%

of Smog Checks each year, and directed inspections are a major source of revenue for

eligible stations (Eisinger, 2010). The policy of directing vehicles was intended to make

California’s privately run system more like government-run systems in other states, which

were thought to be less prone to fraud. However, test-only stations were still privately run,

and lacked the incentive of a test-and-repair station to profit from performing necessary

repairs. In 2005, the program allowed a special class of “Gold Shield” test-and-repair

stations to inspect directed vehicles as well.

In 2008, the BAR conducted random roadside emissions inspections and compared

the roadside results to the same cars’ most recent official Smog Check. Many cars listed

as passing their last Smog Check failed the equivalent roadside inspection; 19% of older

cars passing inspection less than a year prior failed the roadside test. Of the cars that

failed roadside testing, approximately half had failed their initial official inspection, but

then (supposedly) obtained the necessary repairs and passed their final re-inspection at

a Smog Check station.8 A potential implication of the discrepancy is that these cars did

not truly pass the re-inspections: someone had instead manipulated the testing outcome.9

The discrepancies were equally common for test-and-repair stations and test-only stations,

undermining the logic for sending directed vehicles to the latter.

8“Evaluation of the California Smog Check Program Using Random Roadside Data”, 2010 Adden-
dum, California Air Resources Board, February 2010. Available online at http://www.bar.ca.gov/80_
BARResources/02_SmogCheck/addendum_with_report.pdf.

9An alternative explanation is that the effects of most emissions repairs are short-lived, lasting long
enough to pass the follow-up inspection, but degrading to the pre-repair state within a few months.

6

http://www.bar.ca.gov/80_BARResources/02_SmogCheck/addendum_with_report.pdf
http://www.bar.ca.gov/80_BARResources/02_SmogCheck/addendum_with_report.pdf


In response to the roadside inspection study, the California State Legislature further

overhauled the Smog Check program. California Assembly Bill AB2289, passed in 2010,

directed the BAR to design a new system for certifying stations to inspect directed vehi-

cles, using metrics based on testing results. The system the BAR proposed and eventually

implemented was dubbed STAR. Under the new regulations, owners of directed vehicles

must obtain checks at STAR-certified locations. STAR stations could be either Test-and-

Repair stations or Test-Only, and had to meet specific thresholds on three metrics based

on the Smog Check inspection data reported to the BAR. We discuss the three thresholds

in detail below.

The BAR finalized regulations for the STAR Program in November 2011, and pub-

lished STAR scores for all stations in the spring of 2012. The program officially began

the next year—all directed vehicles must be inspected at STAR stations as of January 1,

2013.

3 Data

To measure the volume of re-inspections and generate our versions of the STAR qual-

ity metrics, we employ inspection-level data from the California Smog Check program.

Stations conduct all Smog Check inspections using equipment attached to the ETS that

automatically sends results of the test to the California BAR.10 Our data consist of the

population of vehicle inspections conducted in California between 1996 and 2012 and

transmitted through ETS.11

Each observation in the Smog Check data represents a single inspection, and includes

the Vehicle Identification Number (VIN) of the vehicle tested, the date and time of the

inspection, the odometer reading, an indicator for the outcome of the test, and emissions

readings for hydrocarbons (HCs), NOx, and CO. Each Smog Check inspection record

further contains a 6-digit station identifier, which we join to a crosswalk giving the zipcode

of each station.12

We determine model year and vehicle type from the included VIN.13 We also utilize

10We obtained access to the Smog Check data via a Public Records Act request, the California equiv-
alent of the Freedom of Information Act.

11Data from 1996 and 1997 are incomplete, as the BAR was phasing in the ETS during these years.
When available, we use these data to construct any lagged measures for inspections in later years, but
our contemporary analysis does not begin until 1998 when the data are more reliable.

12We are grateful to Emily Wimberger for providing this crosswalk.
13Although the Smog Check data contain some direct information on vehicle types, it is messy and at

times unreliable when compared to known VIN information. All vehicles manufactured after 1980 have
a standardized 17-digit VIN: the first 8 digits plus the 10th and 11th precisely indicate the vehicle type,
at the level of make/model/engine/body type/transmission/year/plant. For earlier vehicles, different
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the provided odometer reading in calculating our hypothetical STAR scores.14

We use pollution data from the CARB Air Quality Database, a collection of air mon-

itors taking hourly pollution readings. We use data from 1998 to 2009, and focus on

CO, NOx, ozone (O3), and particulate matter (PM). We aggregate hourly readings for

CO, NOx and O3 to the county-day level by averaging individual monitor readings in a

given county, and aggregate daily PM readings to the weekly level (most PM monitors

take measurements once every six days). We do not weight monitors by any distance

metric, and use an unbalanced panel of monitors to maximize available data. To improve

readability of our results, we scale pollution readings for CO, NOx and O3 to parts per

billion (PPB).

O3, a major component of the atmospheric condition commonly known as smog, is

a secondary pollutant, generated by atmospheric mixing of volatile organic compounds

(VOCs) and NOx. Depending on the current state of local VOC and NOx levels, additional

NOx can either increase or decrease O3, which makes O3 a difficult pollutant to analyze

on a large scale. Regardless, a primary interest of the program was to reduce smog, so

we test for general impacts of O3. The link between PM and automobile use is also

largely secondary. The largest sources of PM from automobile traffic are combustion of

diesel fuel and wear from road and engine friction. We expect little change in these sources

from Smog Check—California does not require Smog Checks for diesel vehicle from model

years prior to 1997, and I/M should do nothing to change road wear. However, through

atmospheric reactions NOx can form fine particles, providing a vector for an impact, and

given the literature on the negative health effects of PM, we include this pollutant as

well.15 Our PM data gives the concentration of particles less than 10 micrometers (PM10)

in units of micrograms per cubic meter (µ/m3). Local weather influences both general air

pollution and the types of emissions automobiles generate (Knittel et al., 2016). Ambient

temperature can also influence inspection results, as emissions control systems function

better when warm. We control for daily high and low temperatures and daily precipitation

at the county level. We generate weather data following the methodology of Schlenker

and Roberts (2006): taking spatially detailed monthly weather data generated by Oregon

State University’s PRISM model, aggregating the resulting grid of weather data by county

using GIS, and using historical daily averages to interpolate a measure of localized daily

manufacturers used their own formats. We determine make, model year and an approximation of the
vehicle-identifying prefix for most of the vehicles manufactured 1975-1980.

14We employ an algorithm to “clean” the odometer variable, correcting for rollovers, typos and other
glitches that produce unbelievable values for miles traveled between inspections. Specifics of our algorithm
are available upon request, or see the data archive for Sandler (2012).

15See http://www3.epa.gov/airtrends/aqtrnd95/pm10.html, (accessed October 30th, 2015). See
also Dominici et al. (2014) for a review of recent literature on particulates.
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weather.16 Weather fluctuations should be exogenous to inspection timing, and their

inclusion should do little to change our primary estimates.

Finally, for our simulations we use county-level annual birth rates from the California

Department of Finance.

4 Empirical Methodology

We estimate the impact of the Smog Check program, and the projected impact the new

STAR program in particular, by leveraging random variation in the timing and location of

repairs of failing vehicles. We cannot observe actual repairs, and we instead focus on the

timing of final re-inspections following a failed inspection. A final passing re-inspection

theoretically indicates a repair took place to reduce a vehicle’s emissions below the legal

thresholds. Thus, we use final re-inspections in an inspection cycle as a proxy for repairs.

Of course, this is not a perfect measure: a final re-inspection is a necessary but not

sufficient condition for a repair to occur. There will be cases where the final re-inspection

is passed via owner or station fraud, rather than true repair. This drives our interest in

measuring station quality, as final re-inspections at high quality stations are much more

likely to proxy for a real repair.

The effectiveness of I/M depends on inspections accurately assessing vehicle-level emis-

sions, and both inspectors and vehicle owners can influence test results through dishonest

behavior (Oliva, 2015). Evaluating the environmental benefits of programs to increase

I/M station quality using a simple pre/post examination of air pollution levels is prob-

lematic due to the possibility of stations attempting to game the rating system. Drivers

of marginal cars have an incentive to seek test providers that are more lax in testing

or willing to falsify tests, which in turn provides an incentive for test providers to en-

gage in such duplicitous behavior to draw business. To avoid such problems, we use the

California STAR quality-control program metrics to examine the role of “better” sta-

tions, as measured by the STAR metrics, before the development of the program. We

generate retrospective STAR scores for the period 1998–2009 based on the metrics the

BAR eventually used. This allows us to establish the link between station quality and

local air pollution using what would be “better” stations by STAR standards before the

state even proposed the program, such that no gaming behavior is possible. This section

describes our methodology in detail, including construction of our retrospective station

quality metric and our identification of the effects of the Smog Check I/M program and

16We are grateful to Wolfram Schlenker for providing code to create the interpolated daily weather
series.
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STAR.

4.1 STAR-based Station Quality Metrics

The STAR program certifies stations based on past inspection results. To qualify for the

program and receive business from “directed” vehicles as defined in section 2, stations must

have a passing grade on three metrics, based on the results of their inspections in the Smog

Check database. These include a short-term measure called the Similar Vehicle Failure

Rate (SVFR), using inspections taking place in the most recent calendar quarter, and a

longer-term measure called the Follow-up Pass Rate (FPR), based on current inspection

results of vehicles that a station inspected and passed on the previous inspection. The

other measure involves deviations from standard Smog Check test procedure.17

All STAR metrics compare test outcomes at the station in question to average rates for

similar vehicles statewide. The BAR defines “similar” vehicles as having the same make,

model, year, engine displacement, transmission type, and body style. Both the long-term

FPR and the key short-term measure, the SVFR, construct expected total failure rates

at initial inspections based on similar vehicles. The BAR compares these measures to

the actual failure rate for vehicles inspected at a given station. Although the BAR did

not start calculating these measures until after our sample period, we have all available

information the STAR program uses and can construct our own measures of both the

FPR and SVFR using observed historical inspection results.

Vehicles registered in basic and enhanced Smog Check areas must be inspected every

two years. We use the term “cycle” to refer to each time the vehicle is up for inspection

before registration. Each cycle may involve multiple inspections if the initial inspection

is failed, culminating with a final re-inspection where the vehicle eventually passes. Let s

index inspection station, n index vehicle, m vehicle type, c inspection cycle, and q calendar

quarter. We index inspections within cycles with i ∈ {1, ..., I}. If a vehicle passes the

first inspection of a cycle, I = 1. Let ηs(c, i) denote the set of vehicles that receive their

ith inspection at station s during cycle c . We define the general expected failure rate for

station s as:

Θ(ηs(c, i), c
′, i′) =

1

|ηs(c, i)|
∑

n∈ηs(c,i)

P (failnc′i′ = 1|mn, q,Xnmqc′), (1)

17If a station deviates from procedure more than the average for similar vehicles, the station can be
ineligible for STAR. The STAR program separates out one of these deviations, selecting the incorrect gear
during the test, from seven other deviations. Stations can fail on up to one of the set of seven deviations
and still be eligible for STAR, but cannot fail the incorrect gear selection metric.
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where failnc′i′ is an indicator equal to one if vehicle n fails the i′ inspection of cycle c′,

and Xnmqc′ is a vector of time-varying vehicle characteristics (e.g., mileage). We calculate

P (failnc′i′ = 1|mn, q,Xnmc′) as:

P (failnc′i′ = 1|mn, q,Xnmc′) = F (m, q) + (Xnmc′ − X̄mc′)β, (2)

where F (m, q) is the proportion of type m vehicles that fail during quarter q, X̄mc′ denotes

the type-specific mean of Xnmc′ during cycle c′ and β is derived from the following linear

probability model using only initial inspections (i = 1):

P (failnc1 = 1) = αm + γq +Xnmcβ + εm, (3)

where αm and γq are vehicle type and quarter fixed effects, respectively. Following the

BAR procedure, X includes odometer reading at the time of the inspection and days since

last inspection. In words, the expected failure rate is the mean of the predicted failure

probability for vehicles inspected during the relevant cycle at the station in question.

Using the notation above, we define the SVFR for station s in quarter q as:

SV FRsq =

1
|ηs(c,1)|

∑
n∈ηs(c,1) failnc1

Θ(ηs(c, 1), c, 1)
. (4)

The SVFR is the ratio of the actual failure rate for initial inspections at the station

during the current period to the expected failure rate for those inspections.

The BAR calculates the FPR score used by the STAR program as the p-value of the

following hypothesis test:

h0 :
1

|ηs(c− 1, I)|
∑

n∈ηs(c−1,I)

failnc1 ≤ Θ(ηs(c− 1, I), c, 1) (5)

hA :
1

|ηs(c− 1, I)|
∑

n∈ηs(c−1,I)

failnc1 > Θ(ηs(c− 1, I), c, 1) (6)

The FPR tests whether vehicles given final inspections by station s on the previous

cycle fail more than expected during the current cycle. Note the vehicles in ηs(c − 1, I)

need not be inspected at station s during cycle c — this tracks the outcome of a given

automobile across all stations.18

We use the Smog Check inspection data to test how well these measures reflect the

18The STAR program actually calculates FPR at the technician level, and assigns stations the lowest
score of all their registered technicians. Because we calculate our version of the FPR at the station level,
we abstract from this distinction for clarity of notation.
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ability of stations to reduce tailpipe measured vehicle emissions. We calculate our STAR

metrics for the period before the program was in place, and thus our metrics are not

subject to gaming or any other responses to implementation of STAR. We regress emis-

sions at a vehicle’s initial inspection of the current cycle on the SVFR or FPR of the

station that conducted the final, passing inspection of the previous inspection cycle. If

STAR metrics capture station “quality” (propensity to accurately test and pass vehicles),

vehicles passed by higher scoring stations should be less likely to fail, and thus have lower

emissions, on their initial inspection of the next cycle. Specifically, we model Yic1, the CO

reading of vehicle n during its initial inspection in cycle c as:

Ync1 = αm + γq +Xnmqcβ +
10∑
b=1

Qn(c−1)I + µSV FRnc1 + εn, (7)

Where again, m indexes vehicle types and q calendar quarters. Xnmqc is a vector of

potentially time-varying covariates, which includes fixed effects for vehicle age, inspection

type, and county of inspection. Our variable of interest is a set of indicators for 10 bins of

each quality score Q, as measured at the last inspection of the previous inspection cycle.

We also control for the SVFR of the station conducting the current initial inspection, to

hold constant the probability of failing independent of underlying emissions, and include

controls for the type of inspection and vehicle type, vehicle age, year, and county fixed

effects.

Figure 1 plots the coefficients on the STAR score indicators for CO emissions—results

for NOx emissions are similar, and versions of figure 1 are available in the appendix as

figure A1. Panel (A) shows results for bins of SVFR, and panel (B) shows results for bins

of FPR. For both measures, vehicles that fail the initial inspection on the previous cycle

are more likely to fail (have higher emissions) on the initial test of the next inspection

cycle. While we do see lower emissions for vehicles passed by stations with higher SVFR

scores, the effect flattens out at higher levels, reflecting an undesirable feature of the SVFR

as a quality metric: a very high SVFR does not necessarily mean a station is high quality.

Low failure rates may indicate fraud against the Smog Check program, but unusually

high failure rates may indicate fraud against consumers rather than rigorous inspections

(Schneider, 2012). For the FPR, the relationship is the opposite of that intended. For

vehicles that failed the initial inspection on the previous cycle, the relationship between

emissions and FPR is essentially flat. For vehicles that pass the initial inspection, higher

FPR correlates with higher CO emissions at the next initial inspection. This counter-

intuitive result suggests vehicles inspected and passed at nominally higher quality stations,

as measured by the FPR, have greater emissions in the future.
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What explains this odd result? The theoretical appeal of the FPR for measuring sta-

tion quality is that it captures whether or not failing vehicles inspected at a station are

correctly repaired before eventually being certified. As we discuss in the next section,

this assumption is critical for any I/M program to reduce pollution levels—inspections

only reduce pollution if they lead to repairs that reduce emissions. The downside of the

FPR score used by the STAR program is that it is necessarily retrospective, capturing

a station’s performance generally two years in the past. This lagged performance met-

ric may not correlate with current performance, which presents a potential problem for

implementation and effectiveness of the current STAR program. We discuss this issue in

detail in section 5.

As we use retrospective data, and have the entire history of each station’s inspections

up through 2012, we can calculate an alternate version of the FPR capturing contempora-

neous final inspections, including re-inspections. We refer to this contemporaneous FPR

as the C-FPR. This score is the p-value from the following hypothesis test:

h0 :
1

|ηs(c, I)|
∑

n∈ηs(c,I)

failn(c+1)1 ≤ Θ(s, η(c+ 1, I), c, 1) (8)

hA :
1

|ηs(c, I)|
∑

n∈ηs(c,I)

failn(c+1)1 > Θ(s, η(c+ 1, I), c, 1) (9)

Our C-FPR tests whether vehicles given their final inspections by station s in the

current cycle fail more than average on their initial inspections in the next cycle (which

may be conducted at other stations). This is a modification from the STAR-measured

FPR, which uses cycle c − 1 in place of the c + 1 in the above metrics. An important

feature of this measure is that it is independent of station incentives. If a station has

a high C-FPR in a given quarter, that means that, for whatever reason, the vehicles it

re-inspected that quarter were more likely to be repaired and thus pass again two years

later. Whether the station actually had good practices or not, a high C-FPR means that,

empirically, good inspections were done that quarter.

Panel (C) of figure 1 shows the relationship between the C-FPR score and future

emissions rates. Not only are higher C-FPR scores associated with lower CO emissions

on the next inspection, the relationship is nearly linear. We focus on measuring station

quality using the C-FPR for our air pollution results in the section 5.
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4.2 The Effect of I/M Programs on Local Air Pollution

Counties and air quality management districts must implement the basic or enhanced

Smog Check program when pollution levels cross thresholds set by the federal Clean Air

Act. As a result, not only will the pre-trend of increasing emissions lead to bias in estimat-

ing the effect of the Smog Check program, exceeding the federal air pollution standards

may trigger additional policy responses. For instance, policymakers may respond to high

pollution levels by increasing mass transit options, or subsidizing engine modifications

on commercial trucks. Further, any kind of before/after comparison risks confounding

effects of Smog Check with effects of state- and nation-wide policy changes, particularly

emissions standards on new vehicles.

To avoid such issues, we estimate the effect of Smog Check and the new STAR program

by exploiting a key realization about the nature of vehicle inspection programs. Initial

inspections, passed or failed, correct or not, cannot directly impact air pollution. That

is, to a first approximation, inspections do not affect local air pollution levels ; detection

of faulty engines and subsequent repairs do. The only way inspections affect air pollution

is through inducing repairs or scrappage. If a vehicle is actually in a failing status but is

incorrectly passed on an initial inspection, this should not change air pollution levels—

emissions will be high both before and after the inspection. However, local air pollution

levels would improve if stations conduct repairs as a result of a failed initial inspection, and

correctly verify the effectiveness of the repair by re-inspecting the failing vehicle. Station

quality is thus important, as a sham initial inspection, or an omitted repair followed

by a sham re-inspection, should have no more effect on air pollution than no inspection

program at all.

Conveniently, the timing of inspections is exogenous to both levels and (non-Smog

Check) policy-driven changes in local air pollution. An annual vehicle registration notice

from the California DMV prompts vehicle owners to obtain a Smog Check every two

years. Vehicle registrations are due on the anniversary of the date the vehicle was initially

registered in California, and the registration notice comes in the mail around 60 days

before the vehicle’s registration expires. In California, the expiration date for a vehicle’s

registration stays constant even if the vehicle is sold. Thus, if a vehicle ever changes

owners, the timing of the biennial Smog Check is unrelated to any choice on the part of

the current vehicle owner. This provides variation in registration dates, variation in when

the vehicle owner obtains the initial inspection, variation in whether a vehicle fails the

initial inspection, and variation in how quickly the owner repairs the vehicle and schedules

the re-inspection in the event of an inspection failure. None of these sources of variation

should correlate with levels of air pollution, except possibly through seasonality, for which
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we control using fixed effects.

We create a daily panel of re-inspection counts aggregated by county of the station con-

ducting each inspection. Choosing an overly fine geography risks attributing inspections

to the wrong location and ignoring spillover effects from pollutants blown to neighboring

areas. At the same time, broad geographic definitions reduce our sample size and obscure

important variation. We aggregate at the county level as a compromise between these

constraints. Counties in California are large relative to other parts of the United States,

but a county is a reasonable approximation of the area in which a vehicle owner does

most of their commute driving; data on county-to-county migration flows from the 2000

Census show that 82% California workers live and work in the same county.19 Further,

the EPA determines Clean Air Act attainment status at the county level, making it a

policy-relevant level of aggregation.

Although daily variation in re-inspections is useful for identification, there is a lag

between the repair of a failed vehicle and when we expect to see a change in air pollution

levels. Pollutants like NOx and CO persist in the air and may take time to drift to a

sensor, and there may be a period of days between a repair and the date the station

records the re-inspection. Thus, associating air pollution levels on a specific day with

re-inspections on the same day is overly restrictive. To address this issue, we use a 90-day

rolling total of re-inspections as our measure of the intensity of re-inspections. We obtain

qualitatively similar results using a 30-, 60- or 120-day window (see online appendix table

A1). We also obtain similar results aggregating pollution levels at the weekly level (see

online appendix table A3).

Because older vehicles are more polluting on average and thus more likely to be tar-

geted by California’s policy of directing vehicles, we split results by vehicle age to estimate

separate effects for re-inspections of older vs. newer vehicles. This requires we formally

define “older” in our context. Beginning in 1980 three major improvements in engine tech-

nology led to significant reductions in vehicle emissions: the three-way catalytic converter,

introduced in 1980; fuel-injection systems, introduced in 1985; and second-generation on-

board monitoring computers (called OBDII), introduced in 1996. Each of these technolo-

gies were adopted rapidly, and affected emissions both under normal operating conditions

and potentially under “failing” conditions as measured by Smog Checks.

To help determine a reasonable cutpoint for old versus new vehicles, we plot average

CO and NOx emissions measured at passed and failed Smog Checks by model year.20

19See http://www.census.gov/population/www/cen2000/commuting/index.html, accessed August
1, 2015. We obtain qualitatively similar results when we aggregate at the air basin level.

20O3 and PM10 are not tailpipe pollutants and as such are not measured directly by Smog Check
inspections.
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Figure 2 shows that, for both pollutants, emissions at passing inspections are decreasing

across model years in a largely continuous fashion as general automobile technology im-

proves. For failed inspections, average Smog Check test results exhibit a strong decline in

CO levels beginning with the 1985 model year, and a strong decline in NOx levels begin-

ning with the 1994 model year. To be more conservative in what we call “older” cars, we

opt for 1985 as the cut-off year between old and new vehicles. If we separate out effects

into three groups, one for each “era” of pollution control technology, we obtain essentially

identical effects from re-inspections of the 1985–1995 and 1995+ vehicles, with no change

in the effect of 1975–1985 vehicles, indicating that the split at 1985 is appropriate. See

appendix table A2.

We estimate the effect of re-inspections on levels of a pollutant p ∈ {NOx, CO,O3, PM10}
in county g in time t as:

ptg =

(
90∑
i=0

Rold
g(t−i)

)
β1 +

(
90∑
i=0

Rnew
g(t−i)

)
β2 + γXgt + εgt, (10)

where Rold
ct and Rnew

ct denote the number of re-inspections of older and newer vehicles,

respectively, Xgt is a vector of county-level covariates, and εgt is an error term. We

specify re-inspections in levels. Holding weather, county geography and related factors

constant via fixed effects, to a first approximation repairing one failing vehicle should

remove the same quantity of emissions, and by extension reduce air pollution levels by the

same amount, regardless of whether this represents a 1% change or a 0.001% change in the

level of re-inspections. This will cause the model to predict much larger effects for densely

populated areas such as Los Angeles County, a desirable feature of our specification. Los

Angeles County is heavily polluted in part because it has a very large number of cars

on the road, and we expect it to experience large reductions in pollution relative to the

counterfactual if the Smog Check program causes repairs for a large numbers of high-

polluting vehicles. Our results are robust to excluding Los Angeles County, but even if

this county were driving our results, it is worth noting that Los Angeles County has a

population of more than 10 million, larger than many European countries and all but

the 10 largest U.S. states.21 β1 and β2 give the causal effect of additional re-inspections

on air pollution levels. In our preferred specification, Xgt includes controls for weather,

county fixed effects, calendar-week fixed effects to flexibly control for statewide changes

across time, and county-specific cubic time trends. Online Appendix Figure A2 shows

21For results without Los Angeles County, see Online Appendix Table A3, column 2. Because observa-
tions from Los Angeles County substantially increase the variance of our right hand side variables, omit-
ting them naturally increases our standard errors substantially, but our point estimates stay relatively
consistent.

16



the residual variation for three large urban counties of the 90-day rolling totals of re-

inspections after controlling for the covariates from our preferred specification.

Identification of the effect of station quality follows from the same logic as the effect

of re-inspections. The number of re-inspections at higher- and lower-quality stations will

fluctuate over time with the variation in the timing of the initial Smog Checks of vehicles

eventually taken to those stations. As our quality metric was unobservable during the

period covered by our analysis, and the study of roadside inspections leading to the devel-

opment of the STAR program was not even released until 2010, the distribution of vehicles

across high- and low-quality stations is exogenous. This further assumes consumers had

no other way to identify low-quality stations willing to pass a failing vehicle before STAR.

One way to test this assumption is to compare the average C-FPR of stations inspecting

older vehicles to the average for stations inspecting newer vehicles. Pre-1985 model year

vehicles are more likely to fail and likely more expensive to fix. If consumers had any

systematic way of identifying “bad” stations willing to give a sham inspection, we would

expect to see older vehicles disproportionately inspected at lower quality stations. We

observe the mean C-FPR for older and newer vehicles is essentially the same. Given our

argument that only accurate re-inspections reduce local air pollution, we expect to see

smaller or zero effects from re-inspections at low-quality stations, and larger effects from

re-inspections at high-quality stations.

Conducting analysis at the county rather than station level requires we construct a

county-level measure of station quality. We estimate the interaction of station quality and

re-inspections using two different approaches. First, we calculate a 90-day rolling average

of the C-FPR score at the county level, weighting our individual station C-FPR scores by

the number of re-inspections at each station. We interact this county-level average with

the count of re-inspections:

ptg =

(
90∑
i=0

Rold
g(t−i)

)
β1 +

(
1

91

90∑
i=0

CFPRold
g(t−i) ·

90∑
i=0

Rold
g(t−i)

)
δ1 +

(
90∑
i=0

Rnew
g(t−i)

)
β2 (11)

+

(
1

91

90∑
i=0

CFPRnew
g(t−i) ·

90∑
i=0

Rnew
g(t−i)

)
δ2 + γXgt + εg,

where CFPRold
gt and CFPRnew

gt denote the county average C-FPR of stations conducting

re-inspections of older and newer cars, respectively.

We next take a more flexible semi-parametric approach, equivalent to interacting re-

inspections with bins of average county-level C-FPR scores. Because our air pollution
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analysis uses aggregated data, this takes the form of counting re-inspections of older and

newer cars at stations falling into each of 20 equal-size C-FPR bins:

ptg =
20∑
b=1

βb1

(
90∑
i=0

Rold
bg(t−i)

)
+

20∑
b=1

βb2

(
90∑
i=0

Rnew
bg(t−i)

)
β2 + γXgt + εg, (12)

where Rold
bg(t−i) counts total re-inspections of older vehicles conducted at stations with

C-FPR scores falling in bin b within a county in period (t− i), and Rnew
bg(t−i) is the corre-

sponding count for newer vehicles.

5 Results

Panel A of table 1 summarizes our variables of interest. For consistency with our regression

results, we show NOx, O3 and CO in parts per billion (ppb).22 Average levels of both NOx

and CO fell across our sample period, dropping almost 350 ppb (0.35 ppm) for CO and 10

ppb for NOx. O3 was largely unchanged, remaining within 0.5 ppb of initial 1998 levels.

We note the number of personal automobiles on the road in California increased by almost

1.5 million vehicles across this period, so no change in O3 levels does not necessarily mean

that the Smog Check program had no impact on O3. PM10 levels fluctuate from year to

year with no obvious pattern. To give a sense of the change in vehicle technology, we

also show the average NOx emissions reading at I/M emissions tests in each year. NOx

emissions largely fell over the sample period.

California is a large and geographically diverse state, with very different climate,

topology and population density in the northern and southern regions. For southern

California, panel B shows averages for Los Angeles County, the county with the most

annual inspections. Improvements in CO were more drastic in Los Angeles County than

the state as a whole, decreasing by over 800 ppb (0.8 ppm). NOx decreased around 40

ppb, just over 50% of 1998 levels, while O3 levels increased. For northern California, panel

C shows averages for the 9 counties that make up the San Francisco Bay Area.23 The San

Francisco Bay Area follows the general pattern of California, with similar improvements

in both CO and NOx and little change in O3 and PM10.

22Researchers often show CO in parts per million (ppm), so at first glance our CO numbers appear
larger than prior studies looking at CO in California. For example, Currie and Neidell (2005) show that
in 2000, the average California 8-hour high CO level was 1.3 ppm (1,300 ppb), compared to a full day
average of 649 ppb for the same period in our data.

23The counties in the San Francisco Bay Area are: Alameda County, Contra Costa County, Marin
County, Napa County, San Francisco County, San Mateo County, Santa Clara County, Solano County
and Sonoma County.
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Turning to the data on Smog Check, two general trends appear. First, increases

in inspections (and re-inspections) correlate with decreases in both CO and NOx but

with little change in O3. Second, neither total inspections nor re-inspections increase

monotonically with time. Total inspections peak in 2004 and then drop, likely due to a

2005 Smog Check policy change that exempted pre-1975 vehicles from inspections. As

we control flexibly for such state-level changes across time in our regressions, such trends

should not bias our coefficient estimates. In most of the state, re-inspections decline

around 2002, corresponding to a decrease in the overall failure rate (and thus the need

for re-inspection/repair). As a caveat, we note the San Francisco Bay Area seems to be

missing a large number of inspections from 2002 through mid-2003—we exclude these

years for these counties from our empirical analysis. We are not aware as to why these

counties are “missing” inspections for this period, though the timing corresponds to a

shift in the Smog Check regime in these counties, during which stations in the region

were upgrading the machines used for Smog Checks. Results are robust to inclusion of

this period for these counties.

5.1 Effect of Re-inspections

To establish a causal link between re-inspections (our proxy for repairs) and local air pollu-

tion, we estimate a series of regression models based on equation (10), where the coefficient

of interest is the effect of re-inspections of failing cars on local air pollution. Specifically,

in table 2 we estimate the link between the number of county-level re-inspections and

county-level measures of the direct pollutants CO and NOx. We scale our results to show

the effect per 1,000 re-inspections in the past 90 days. Using values from table 1, the

average California county sees 1,000 re-inspections of all vehicle ages every 12 days, while

Los Angeles County has an average of just over 1,000 re-inspections every day. The nine

counties making up the San Francisco Bay Area conduct about 1,000 re-inspections every

two days.

Column 1, the most basic model, includes no controls. Both CO and NOx show a

positive correlation between county pollution levels and the number of re-inspections for

older cars: an additional 1,000 re-inspections correlates with a 42.5 ppb increase in CO

(0.09 of a standard deviation) and a 2.0 ppb increase in NOx. When we focus on newer

cars, the sign flips for CO to a 2.4 ppb decrease per additional 1,000 re-inspections. The

sign on NOx remains positive, but is smaller at 0.15 ppb per 1,000 cars. All results are

statistically significant at either the 5% or 1% level.

Adding county fixed effects (Column 2) increases the negative effect of newer car re-
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inspections on CO to 13.3 ppb per 1,000 re-inspections, but the impact from older cars

remains similar. The sign on NOx is now negative for newer cars, with an additional 1,000

re-inspections lowering ambient levels by 0.6 ppb. Adding controls for weather (Column

3) does little to change the size or sign of our results—while weather can influence the

relationship between emissions and ambient pollution levels, we expect it to be exogenous

to the number of re-inspections. Thus, controlling for weather serves largely to increase

precision of our estimates. Column 4 adds calendar week effects to flexibly control for

state-wide trends and within-year seasonality.24 Controlling for state-wide time effects

pushes coefficients toward zero for both vehicle age groups and both pollutants, but the

coefficients on re-inspections of older cars remain positive.

Finally, Column 5 controls for local trends using a third-order polynomial time trend

for each county, in addition to the county fixed effects, weather controls, and calendar

week fixed effects of other models. After controlling for differential trends across counties,

increasing re-inspections (repairs) of both older and newer cars reduces ambient CO and

NOx. The sign flip associated with the inclusion of county-specific trends suggests counties

with increasing air quality saw decreases in the number of re-inspections of older cars

over time. Older cars are more polluting than newer cars, but also more likely to be

scrapped or sold out of state, especially if these vehicles cannot pass a Smog Check

without significant repairs. As a result, counties with many older cars early in our sample

period would see fewer re-inspections of older cars over time due to increased scrappage

and thus declining air pollution that is not directly related to Smog Check inspections and

repairs. Figure A3 in the Online Appendix illustrates these trends for three large urban

counties. Failing to account for such trends biases the estimated impact of repairing

older cars. In our preferred specification, re-inspecting an additional 1,000 older cars

decreases ambient CO by 14.4 ppb and ambient NOx by 0.7 ppb (0.05 and 0.03 of a

standard deviation, respectively). An additional 1,000 newer car re-inspections decreases

ambient CO by 4.2 ppb and NOx by 0.8 ppb (0.01 and 0.03 of a standard deviation,

respectively). Our basic results are robust to several alternate specifications of time

controls, the results of which are presenting in online appendix Table A3. Specifically, we

obtain similar results dropping Los Angeles county, including-day of-week and month-of-

year fixed effects, including county-by-year fixed effects, and aggregating our data at the

weekly level.

As a whole, we find the Smog Check I/M program’s requirements to repair and re-

24While weather is exogenous to the number of inspections, time of year is not: inspection timing
corresponds with time of initial purchase, and the number of new cars sold varies systematically across
time of year.
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inspect high-polluting vehicles moderately improved local CO and NOx levels, particularly

when repairing older model-year cars. We next consider how station quality controls, as

proposed in the new STAR program, affect the benefits of I/M.

5.2 Station Quality

To test for the role of station quality, we examine how our C-FPR score correlates with

the effect of re-inspections. We first calculate the C-FPR score for all stations in the

county, then aggregate up to the county level, weighting by the number of re-inspections

conducted over the previous 90 days at each station (see section 4).

Table 3 shows our results. All columns use the controls from column 5 of table 2:

weather controls, county fixed effects, county cubic trends, and calendar week fixed effects.

Column 1 repeats the model of table 2 column 5 for comparison. Column 2 includes an

additional interaction between the number of re-inspected vehicles in the last 90 days

with the continuous C-FPR measure. Higher C-FPR corresponds to the county having

a greater share of re-inspections at stations the STAR program would consider to be of

better quality, had STAR existed at the time.

Column 2 shows station quality matters in the case of older vehicles. As an extreme

example, re-inspections in a county with an average C-FPR of zero would have zero effect

on either pollutant, but the effect of re-inspections increases with average station quality.

For ease of interpretation, we present the estimated effect for each vehicle age calculated

at the average county-level C-FPR in our sample. For older cars, an additional 1,000

re-inspections in a county of average C-FPR would decrease ambient CO levels by 46.64

ppb and average NOx levels by 3.7 ppb, with both average effects statistically significant

at 1%.25 These effects are significantly larger than estimates that do not account for

station quality. For CO, the average effect is roughly consistent with older vehicles’ share

of all CO emissions, and engineering models predict successful repairs of most failing older

vehicles would create an effect this large. The California Air Resource Board’s criteria

emissions (CEPAM) and emissions factor (EMFAC) emissions inventory models indicate

1975–1985 model year personal vehicles contribute around 20 percent of all CO emissions,

more so in the earlier years of our sample when these are more common cars. Our results

in Figure2 indicate a vehicle of these vintages that fails a Smog Check typically has

emissions around 3 times higher than a vehicle that passes inspection. Depending on the

county, 1,000 re-inspections of 1975–1985 model year vehicles represents the re-inspection

of 0.2 to 20 percent of all personal automobiles of these vintages. This makes a change of

25We calculate the effect at the average level using the margins command in Stata 15.
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around 47 ppb in CO concentrations, between 5–10 percent of mean CO levels, plausible.

Our estimate for NOx reductions in a county with average station quality is less in line

with the models, which predict older vehicles contribute only around 3–5 percent of all

NOx emissions. However, the physical and chemical processes behind NOx concentrations

are more complicated, with non-linearities such that a modest reduction in NOx emissions

might have a disproportionate effect on NOx concentrations, depending on atmospheric

conditions and concentrations of other pollutants such as hydrocarbons and ozone.

The case for station quality when testing newer vehicles is less clear. The signs of

both the baseline effect and the interaction effect are reversed from that of older vehicles:

a greater share of re-tests at higher quality stations reduces the effect of re-inspections

on ambient pollution for both CO and NOx. Importantly, these results are precisely

estimated but economically insignificant, which is clear when considering the marginal

effect at the mean. At the average county C-FPR of around 0.59, an additional 1,000 re-

inspected newer cars would increase pollution levels by around 0.0002 standard deviations

for CO and 0.014 standard deviations for NOx. The result is not statistically significant

for CO, and the average effects on both pollutants are about half the size of the already

small overall effects for newer cars from table 2.

Figure 3 clearly illustrates the effect of station quality for newer cars is effectively zero.

Following equation (12), we generate 20 bins of C-FPR scores, in units of 0.05, from 0

to 1. We include sets of 20 variables each for older and newer cars, giving the counts of

re-inspections at stations in the appropriate C-FPR bin. Figure 3 plots each coefficient

on the bin-specific count variables, and provides a LOWESS fit with bandwidth N ∗ 0.8

to illustrate the general patterns across the C-FPR distribution.

Panel A shows results for CO, and panel B shows results for NOx. For newer cars, the

effect of a re-inspection is approximately constant at zero across our estimated measure

of station quality. Visual analysis shows the puzzling positive results from table 3 are a

result of effects for counties with average FPRs very close to 1, which represent a small

share of re-inspections overall. For example, only 24% of total newer vehicle re-inspections

across our entire sample occurred at stations with C-FPR levels greater than 0.9. Panel B

shows that with older cars, there is a clear differential between a re-inspection at a lower-

quality vs. a higher-quality station. Increasing re-inspections in areas with C-FPR scores

below approximately 0.3 has no effect on local air pollution, with increasing benefits of

re-inspections for higher-quality stations.

Table 3 and figure 3 jointly suggest increasing re-inspections of older cars in areas with

higher estimated station quality reduces air pollution in an economically and statistically

significant manner. However, there is no effect for areas with lower station quality, and
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economically insignificant effects regardless of station quality when considering newer

model-year cars.

The small effect of re-inspections of newer cars on air pollution is to be expected, to

some extent. As figure 2 shows, the average differential in tailpipe emissions between

a passing and a failing vehicle decreases with model year. Bringing an average failing

1984 model year vehicle up to passing standard reduces the CO concentration in its

tailpipe emissions by around 14,000 parts per million, while fixing an average 2001 model

year vehicle reduces CO emissions by about 1,300 parts per million, more than 10 times

less. With a smaller effect on emissions per vehicle of conducting repairs, it should not

be surprising that the effect of repairing 1,000 vehicles on ambient pollution is smaller.

The small effect of re-inspections and the zero effect of station quality may also have

to do with the OBDII computers installed in vehicles manufactured after 1996. These

computers trigger the familiar “check engine” light when they detect an emissions failure,

possibly leading to repairs outside the Smog Check inspection cycle. Station quality at the

biennial inspection would then have little effect, as most serious emissions failures would

have already been fixed. Indeed, as we show in appendix figure A4, newer model years,

particularly after 1996, have significantly lower failure rates on initial I/M inspections.

More troublingly, OBDII systems may make it easier to consistently defeat detection

of emissions failures, as was the case in the scandal Volkswagen diesel vehicle testing

scandal discovered in 2015. The STAR quality metrics, including our C-FPR variant,

are designed to catch cheating stations by comparing their results to others statewide.

However, if a vehicle passes incorrectly at every inspection, this will lead to scores that are

uncorrelated with actual inspection results, especially if the cheating behavior is on the

part of the vehicle owner or manufacturer rather than the inspection station. A related

issue with inspection programs, identified by Mérel et al. (2014), is that vehicle repairs

may not last for the full period between inspections. Depending on the rate of repair

decay, the benefits of passed re-inspections could be highly transient.

Regardless of the reason, the small effect of re-inspections of newer cars and the

negligible effect of station quality for those vehicles is problematic for the social efficacy

of such I/M programs in general, and STAR in particular going forward. Newer vehicles

make up the majority of inspections, and the majority of the costs of both inspections and

repairs come from these vehicles. If the Smog Check program, even enhanced by STAR,

is not delivering air pollution benefits from newer vehicles, this diminishes the value of

the program. Importantly, this does not necessarily imply that out-of-cycle repairs do not

raise social welfare by reducing emissions. However, one cannot attribute such repairs to

the I/M program itself.
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5.3 Effects of Re-inspections on Secondary Pollutants

We focus on the effect of the Smog Check I/M program on CO and NOx because these

pollutants are directly emitted by motor vehicles. However, the main social harms from

NOx and the policy interest in controlling it stem from its role in forming secondary

pollutants, principally O3 and PM. O3 in particular has a complicated formation process,

and it is possible that the moderate reductions in NOx caused by Smog Check might not

translate into reductions in O3. In table 4 we estimate our empirical model using ambient

O3 as the outcome. Columns 1 and 2 replicate the analysis of tables 2 and 3 using O3

levels in parts per billion as the outcome variable. The point estimates largely have the

wrong sign, indicating re-inspections increase O3 levels, but although some estimates are

statistically significant, they are economically zero. For the average county, re-testing an

additional 1,000 cars increases ambient O3 by 0.0019 of a standard deviation for older

cars and increases ambient O3 by 0.008 of a standard deviation for newer cars.

O3 levels are negatively correlated with CO and NOx levels in our sample, and so

the small effect and “wrong sign” for our O3 results could simply reflect that correlation.

The process by which NOx and VOCs form O3 resembles a Leontieff production function,

such that when NOx levels are high, reducing NOx emissions may have limited effect

on O3 levels.26 To test this, in columns 3 and 4 we control for the level of NOx and

NOx squared. Our coefficients acquire the “right” sign, with re-inspections of older cars

reducing O3 levels, but the magnitudes are still very small. In appendix table A4 we allow

the coefficients on re-inspections to vary depending on whether the NOx level is high or

low on a given day. We get similar results as those in table 4. It does not appear our zero

findings for O3 are a result of the availability of NOx. Finally, figure 4 plots results by

C-FPR bins, and we see no visual effect.

We next test for the effect of re-inspections on levels of PM10. Because PM10 sensors

only take readings every 6 days, we collapse to the county-week level. For counties with

more than one sensor and thus more than one observation per week, we take the average

PM10 reading for each week and use the weather controls and the rolling total of re-

inspections for the day of the last reading. Table 5 repeats the analysis of table 3 with

PM10 as the dependent variable. Without controlling for station quality, our estimates

are imprecise, but the point estimates indicate re-inspections of older vehicles have a

small negative effect on PM10 levels, while re-inspections of newer cars have a near-zero

effect. Adding an interaction with county-average C-FPR, we find that re-inspections

of older vehicles have no effect on PM10 levels when conducted at poor quality stations,

26There is an additional process by which certain forms of NOx can actually reduce O3 when NOx is
sufficiently abundant. See Muller et al. (2009).
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while re-inspections at high quality stations moderately reduce PM10 levels, a result that is

statistically significant at 5%. At the average C-FPR, 1,000 re-inspections of older vehicles

leads to a 1.97 µ/m3 reduction in PM10 levels, about 0.08 of a standard deviation. As

with CO and NOx, re-inspections of newer cars have the wrong relationship with station

quality, although the effect at the mean C-FPR is economically insignificant. Figure 5

plots results for PM10 by C-FPR bins, and shows that the effect of re-inspections of older

cars increases with the C-FPR score of the stations doing the inspections, while the effect

re-inspections of newer cars is effectively zero at all station quality levels.

5.4 Mechanisms

Before turning to our simulation exercise, we examine how much of the failure of low-

quality stations is driven by consumer behavior, as this may be relevant for policymakers.

In particular, consumers may “shop” for stations that are willing to pass a failing vehicle

without repairs by engaging in fraudulent testing behavior.27 One way to capture the

importance of consumer “shopping” behavior is to look at how many consumers switch

inspection stations after a failed initial inspection, and the profile of the stations at which

they have their final passing test performed (where the passing may be valid or invalid).

Table 6 summarizes the likelihood of two more more re-tests and how often consumers

switch following a failed initial I/M inspection. This analysis excludes vehicles whose

emissions during testing exceeded twice the Smog Check thresholds and were designated

“gross polluters.” As noted in section 2, such vehicles must have follow-up testing at

appropriate stations for subsequent inspections, and including these vehicles would bias

upward the appearance of shopping behavior by showing up as switching across stations.

Row 1, column 1 of table 6 shows that approximately 60% of failed inspections result

in a passed final inspection within 1 week of the initial test. As the number of inspections

prior to passing grows, the likelihood of a quick final passing decreases. Row 2 shows that

many of the cars that eventually pass do so at the same station as the initial inspection.

Just under 65% of all re-tested cars eventually pass at the same station at which they

failed the initial test. Switching becomes more common the longer it takes to pass.

Almost 70% of cycles with two inspections start and end at the same inspection station,

compared to just over 20% of cycles with five or more inspections. Note that such cycles

27The most egregious approach to fraud in I/M is known as “clean piping”: entering the information for
the car to be tested, but connecting the testing apparatus to a known passing vehicle. For tests done by
plugging into the vehicle’s onboard diagnostic system rather than directly measuring tailpipe emissions
(something done in other I/M programs and in California after the STAR program), the equivalent
practice is “clean plugging.” There are a variety of less extreme tricks, generally involving deviations
from the approved test procedure.
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are considerably rarer, making up just 1.5% of all inspection cycles in our data. We

also observe that consumers that do switch end up at stations with lower C-FPR scores,

particularly in cycles with more than two inspections. For example, a car that takes 3

inspections to pass in a given cycle has a 56% (1 - 0.438 from row 2, column 3) probability

of switching stations between initial test and passing, with a decrease of 0.07 in our

C-FPR score between stations. Recall the C-FPR measure is an accurate measure of

station quality in terms of later passage by vehicles re-inspected at said station. Thus,

“switchers” that move stations tend to move to stations of lower contemporaneous quality

as measured by their staying-power of repairs and re-inspections. This is consistent with

a large fraction of consumers putting in some effort to comply with the I/M program,

but eventually some give up and seeking a less legitimate way to pass. No testing data

can truly separate all fraud from genuine repairs. But we do not need to do so from the

perspective of policy evaluation. Our goal is to understand if I/M policies such as STAR

translate to improved air quality. Both genuine and false repairs are a byproduct of I/M

programs, making such switching an outcome of interest rather than a confounder.

6 Simulation Exercises

We can use our estimates to simulate the impact of California’s recently implemented

STAR program, aimed at improving station quality, and the impact of the Smog Check

program as a whole. We first predict what average pollution levels would have been under

STAR during our sample period. We take our estimate for the last year of our sample,

2009, as a rough estimate of the predicted impact of STAR at the time of implementation

in 2013. We then predict what pollution levels would have been throughout our sample

absent any I/M program. In addition to predicting pollution levels, we conduct a rough

cost-benefit analysis considering the benefits of abating the pollutants we study and the

costs of Smog Check and STAR.

The benefits of pollution reduction predominantly arise from reduced infant and elderly

mortality—although pollution impacts other health outcomes, the value of a statistical

life (VSL) is generally high enough that it dwarfs morbidity effects, which are also more

difficult to measure. We use estimates from prior literature in economics on the impacts of

CO and PM10 on mortality, which largely focus on infants. As such, these benefit estimates

ignore mortality effects for those age 1 and older and morbidity effects for all ages. CO

and PM10 have documented direct effects on infant mortality, while the harms of NOx

derive from its role in forming O3 and particulate matter, which also have documented

health effects. As we find no economically significant effect of the Smog Check program
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on O3, we focus on benefits from reducing PM10 and CO.

Instrumental variables estimates from Knittel et al. (2016), Chay and Greenstone

(2003), and Arceo et al. (2015) all find that a one unit reduction in ambient PM10 results

in approximately 10 fewer infant deaths per 100,000 births. However, these studies do not

provide useful estimates of the harms of CO: Chay and Greenstone (2003) do not estimate

CO effects, CO results from Knittel et al. (2016) are too imprecise to draw conclusions,

and estimates from Arceo et al. (2015), which use data from Mexico, are less applicable

to our setting given nonlinearities in the effect of CO and the higher CO levels in Mexico.

Instead, for the benefits of CO reduction we use estimates Currie and Neidell (2005) and

Currie et al. (2009), which both estimate fixed effects models with U.S. data and find a 1

part per million (1,000 ppb) reduction in CO lowers the infant mortality rate by 18.1 and

17.6 deaths per 100,000 live births, respectively. Currie and Neidell (2005) and Currie

et al. (2009) find essentially zero effect of PM10 on infant mortality, which suggests the

possibility of co-pollutant effects. That is, the instrumental variables studies mentioned

above place all mortality effects on PM, while fixed effects models place it all on CO,

when in fact the total weight likely is shared between the two. By drawing results from

different estimation strategies, we over-attribute effects to any single pollutant, making

our benefits an over-estimate. With this in mind, we use the 17.6 deaths per 100,000 live

births estimate from Currie et al. (2009) to estimate the benefits of CO reductions. We

calculate these benefits for each county separately, using county level birthrate data.

6.1 Predicting the Impact of STAR

We first use our regression results to simulate the effect of the specific requirements of the

STAR program at the beginning and end of our sample on CO and PM10. Knowing the

theoretical impact of STAR in 1998 is interesting, but tells us little about what to expect

as the policy goes forward. Thus, we focus on the future impact of more stringent I/M

requirements. To predict pollution levels, we use the models whose results we present in

the second columns of tables 3 and 5 for CO and PM10, respectively.

To project future impacts of STAR, we ask how increasing mean station quality would

change the impact of the existing level of re-inspections. The minimum acceptable FPR

for STAR certification is 0.4. Thus, we estimate changes in air pollution if every re-

inspection of an older vehicle were conducted at a station with our C-FPR score of 0.4

or higher. We take every station with a C-FPR below 0.4, and re-assign re-inspections

of older vehicles from those stations to stations in the same county with C-FPR greater

than or equal to 0.4. Re-inspections are redistributed to “good” stations in proportion
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to each station’s share of re-inspections in same county and the current quarter. Then,

given the simulated distribution of re-inspections over inspection stations, we recalculate

the 90-day county-level moving average C-FPR, and predict counterfactual air pollution

levels using the model and results from column 2 of table 3. One can think of this exercise

as simulating the effect of an idealized certification program targeting true station quality,

as distinct from observable quality. Recall our C-FPR measure is not feasible for use in

certifying stations. The actual STAR program uses the FPR, which uses contemporaneous

inspections to evaluate lagged station performance, and as we show in section 4 the FPR

metric poorly predicts future vehicle emissions.

Figure 6 maps our predicted results by county for the years 1998 (top) and 2009

(bottom), with results for CO and NOx on the left and right, respectively. The counties

making up the San Francisco Bay Area see relatively small changes in 1998, in part because

these counties historically had what would be high C-FPR score stations to begin with:

our theoretical exercise of removing “bad” station re-inspections thus has little bite. But

improving station quality in 1998 would have substantially reduced CO and NOx levels

in a number of California’s urban areas, with Los Angeles County and nearby portions

of southern California receiving the greatest benefit. Although relatively few counties see

a large change in pollution levels, in 1998 more than 15 million people lived in counties

with counterfactual decreases of 20% or more, so welfare effects would have been large.

We discuss such welfare effects further below.

The case for improving inspection station quality in 2009 is less clear. As a result

of older vehicles aging out of circulation, the effect of moving older vehicles to higher

quality stations is limited. Many counties, including the most populous in the state, see

reductions of less than 1% from already lower baseline pollution levels.

These estimates likely overstate the potential impact of STAR, as our measure of

station quality, while based on the STAR program methodology, uses future inspection

results to rate current stations. This improves accuracy in measuring low- vs. high-quality

stations, but is impossible to use in practice. To predict the effect of the STAR program

using the standard STAR measures, we conduct another simulation, this time reassigning

re-inspections of pre-1985 vehicles from stations with STAR metrics below the cut-offs

(FPR below 0.4 and SVFR below 0.75) to stations with STAR scores above those cut-offs.

Table 7 shows the results of simulating implementation of the STAR program in 2009.

Assigning all older vehicles to stations with our C-FPR of 0.4 or higher would raise the

average C-FPR of stations inspecting older vehicles from 0.6 to 0.77. This would cause

the average 2009 CO level to decrease by 11 ppb, the NOx level by almost 0.9 ppb, and the

PM10 level by 0.3 µ/m3. The statewide effect of implementing the STAR program is much
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smaller, with a 3.4 ppb reduction in CO, a 0.29 ppb reduction in NOx, and a 0.1 µ/m3

reduction in PM10. The statewide effect hides substantial variation across the state’s most

polluted areas. The average C-FPR in Los Angeles County was 0.39 in 2009. Moving

re-inspections at low quality stations to stations with C-FPR of 0.4 or higher would raise

the average C-FPR to 0.65, lowering CO levels by 75 ppb, lowering NOx levels by 7.4 ppb,

and lowering PM10 by 3.25 µ/m3. Implementing the actual STAR program in Los Angeles

County in 2009 would raise the C-FPR to just 0.46, with an effect on all three pollutants

roughly one fourth as large as the idealized program. The San Francisco Bay Area had

higher than average C-FPR in 2009, and either of our simulations has only a small effect

on both average station quality and air pollution. In contrast, San Diego County had

an average C-FPR score of 0.33 in 2009, and as in Los Angeles County, implementing

the actual STAR program would have about one fourth the effect of using the C-FPR to

certify stations.

The effect of increasing station quality is quite small in either simulation for 2009.

Even this overestimates the future effect of STAR, as the number of older model year

vehicles on the road falls with time.

6.1.1 Welfare Effects of STAR

Our simulations suggest the current incarnation of the STAR program will do little to fur-

ther improve local air pollution in California. Because the gains from inspections mostly

derive from older vehicles that are becoming scarce on the road, even an inspection pro-

gram using our contemporaneous quality measure would have a small impact by 2013.

Further, the STAR quality metrics available in practice appear to do a poor job of mea-

suring current station quality. As a result, moving vehicle inspections to STAR-approved

stations is unlikely to meaningfully reduce air pollution. However, while STAR is unlikely

to have a substantial impact on air pollution levels, it is a relatively inexpensive policy,

and may have net positive effects on welfare.

Using 2009 county-level birth rates, our predicted effect of STAR on CO would have

prevented an expected 0.64 infant deaths over the year statewide. Using the U.S. EPA’s

preferred estimate of the VSL, $7.6 million, this translates to annual benefits of about $4.9

million. If PM10 affects infant mortality, STAR would have prevented an additional 16.5

infant deaths in California, with welfare benefits of about $125 million. Note that these

results assume a lasting decrease in pollution levels following faulty car repairs. If the

benefits of repairs degrade with time, the health gains will be more short lived and thus

the social benefits lower. As an important caveat, our estimated pollution reductions are

on a large geographic scale, effectively estimating the average reductions across a county.
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PM in particular can travel large distances, so this may be the relevant geographic scale.

But if reductions are more local and the health gains of reduction are non-linear, then

health benefits could be much higher.

While the benefits of STAR for CO in particular are modest, STAR is a fairly inexpen-

sive program. The California State Legislature estimated additional administrative costs

of $350,000-$450,000 per year.28 The more significant source of costs is in time—directing

vehicles to STAR stations instead of the more abundant test-only stations might lead to

increased driving times. In 2009, there were about 3.6 million directed inspections in the

state of California. At the 2009 average hourly wage for California ($23.82),29 if STAR

caused owners of directed vehicles to drive an extra 10 minutes round trip to their Smog

Checks, the time costs would total more than $14.5 million that year.

6.2 Do “Smog Checks” Affect Smog?

We next estimate the effect of the Smog Check Program as a whole on California pollution

levels. The methodology for this simulation is simple–we predict pollution levels in each

year of our sample with the number of re-inspections set to zero for all days and counties.

That is, we estimate pollution levels for the counterfactual world where California had

no Smog Check Program at all. We again use our regression models presented in the

second columns of 3 and 5. However, we assume for purposes of our simulations that

re-inspections of newer vehicles have zero effect on PM10. Our regression results have a

positive effect at the mean C-FPR level, but both the base effect and interaction term

are noisily estimated and statistically indistinguishable from zero, and the marginal effect

at the mean C-FPR is only marginally significant. Taken literally, our point estimates

would imply that eliminating the Smog Check Program would drastically reduce PM10

levels, which seems unlikely.

For the costs of Smog Check, we assume that each inspection has a social cost of

$20. There is no database of Smog Check station prices that we are aware of. However,

anecdotal evidence indicates that inspection stations typically charge at between $30 and

$70 for an inspection (see, e.g. http://www.smogtips.com/smog_program.cfm). We use

$20 as an estimate of cost both to be conservative and to account for the fact that some

portion of the price of a Smog Check inspection is a transfer from the consumer to either

the station or the state, rather than a true social cost. We further assume that each

inspection takes 20 minutes of consumer time, which we again value at the 2009 average

28See http://www.leginfo.ca.gov/pub/09-10/bill/asm/ab_2251-2300/ab_2289_cfa_20100617_

172946_sen_comm.html (Accessed September 23, 2015).
29See http://www.bls.gov/oes/2009/may/oes_ca.htm, (accessed November 9, 2015)
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hourly wage for California, $23.82. An additional cost of the Smog Check Program is

the required repairs when vehicles fail an inspection. To estimate this cost, we employ an

additional set of data from the Smog Check program, containing records on repairs logged

by Smog Check stations. We assume that the number of Smog Check-related repairs each

year are equal to the number of official Smog Check repair records — i.e., there are no

additional repairs that are not logged. A subset of the repair records indicate the cost of

repairs,30 and we use these records to calculate the average repair cost by year. We only

have repair data beginning in 2002, and so our welfare estimates will begin in that year.

Our estimate of the total cost of Smog Check in a given year is then the total number

of inspections, multiplied by $20 plus 0.33 times $23.82, plus the total number of repairs

times the average repair cost.

We note that this exercise will to some extent understate the benefits of Smog Check,

as it implicitly assumes away long-term effects of regular inspections on vehicle emis-

sions. Vehicle emissions controls deteriorate over time. Even if many inspections are low

quality, without any inspection the average emissions rate might climb above what we

observe in our data, as the emissions controls fail to an extent that even an ineffective

inspection system would not permit. We see some evidence of this in the Smog Check

data. California requires vehicles that are imported from other states to receive a Smog

Check before getting an initial registration, and the data indicates which inspections are

“initial registration inspections” of this nature. As not all states have I/M programs,

any difference between emissions at initial registration inspections and normal biennial

inspections will partially capture the long-term effects of having no I/M program. As

we show in appendix table A5, newer vehicles imported from out of state have emissions

readings as much as 20% higher than in-state vehicles, even after controlling for vehicle

type, age, and odometer reading (however, we find much smaller differences among the

oldest and dirtiest vehicles). Note also that we are predicting significantly out of sample

in this simulation. In contrast to our STAR simulation, where we observe a range of

station quality in our data, we do not observe a period with no Smog Checks. Thus,

while we take the trends in the welfare analysis to be informative, the levels may be off

significantly in either direction.

We display the results of our simulation in Figure 7, which plots by year our estimates

of the health benefits of CO reductions, the health benefits of PM10 reductions, and the

costs, of the Smog Check program. Two things stand out. First, despite the relatively

small effect of re-inspections on PM10, particulate matter is so harmful that the aggregate

30Specifically, actual repair costs are reported for repairs where the consumer applied to the Consumer
Assistance Program, or CAP, a program that subsidizes emissions repairs for low-income consumers.
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benefits were quite large, particularly earlier in our sample. Second, the benefits of the

Smog Check Program declined rapidly due to older cars disappearing from the fleet, while

the costs remained relatively constant. We predict that the program still had positive net

benefits in 2009, but the ratio of benefits to costs fell precipitously between 2002 and

2009. In 2002, the benefits from CO reductions alone exceeded the costs of the program,

and the total benefits of pollution reduction were more than 10 times the costs. By 2009,

the benefits of the much smaller reductions in CO were less than a quarter of the cost of

the program, and the combined benefits of CO and PM10 reductions are only about twice

the costs. Given this trend, it seems likely that the benefits fell below the costs between

2009 and the present.

7 Conclusion

Motor vehicles generate a number of pollutants, many of which have an established neg-

ative impact on human health. To reduce the public damages of automobile use, gov-

ernments may use inspection and maintenance (I/M) programs, where stations routinely

test engines for compliance with emissions standards, and require repairs and further

tests in the event of failure. These inspections and repairs are costly to consumers, and

while follow-up tests can show repairs improve emissions at the tailpipe, there is little

causal evidence of how such programs change local air quality. We test two important

questions related to such programs. First, do I/M programs improve local air pollution

in an observable manner on a large scale, beyond laboratory conditions? Using over a

decade of data from the state of California, we show an increase in emissions-related re-

pairs, as proxied by passing post-repair inspections, corresponds to local improvement in

CO, NOx and PM10 levels, but with little change in local O3. This relationship persists

after controlling for a wide variety of location and time fixed effects and ambient weather

controls, and shows California’s Smog Check program has successfully improved local air

pollution. However, additional gains from the Smog Check program are decreasing with

time, as almost all benefits of repairs and re-inspections come from fixing failing older

model cars (1985 and prior) with inferior emissions control technology. As older technol-

ogy cars disappear from the road, the differential between failing and repaired emissions

decreases. This is a case where growth of regulated technology, potentially driven by the

program itself, is reducing the social efficiency of the regulatory program over time.

We combine information on estimated costs of emissions inspections, our estimated

regional pollution improvements, and pollution mortality effects from prior economics

literature to perform a back-of-the-envelope cost/benefit analysis of the California I/M
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program. Our estimates suggest that, while the costs of the program remained largely

constant during our sample, the benefits declined sharply with each passing year as the

older-model cars that benefit most from Smog Checks disappear from the road. Even so,

as of the end of our data sample in 2009, the benefits of the program still exceeded the

costs by approximately 2 to 1, suggesting it would have passed a basic cost/benefit test

at that time, although given the trend it is questionable whether the program would pass

such a test today. Moreover, there remains the question of efficiency relative to other

policies. I/M programs like California’s Smog Check Program are intended to reduce O3

levels by controlling emissions from all vehicles. Given that we find the primary benefit

of Smog Check is from inspections of a shrinking number of very old cars, and manifests

primarily through reductions in ambient particulate matter we must ask—is there a better

policy to achieve these pollution reductions?

We partially address this issue in our second question as we consider whether using a

certifying high quality stations using inspection results can further reduce air pollution.

Given fears of false or low-quality repairs of failing vehicles followed by potentially fraud-

ulent re-inspections, the new California STAR program uses a “Follow-up Pass Rate”

(FPR) measure based on inspection data to determine which stations the state allows

to provide repairs and re-inspections to the dirtiest cars. A number of factors, including

potential system fraud, complicate measuring the role of the FPR after the implementa-

tion of the program, making estimation of program effects difficult. We use the California

Smog Check data from 1998-2009 to construct a modified station-level FPR that conveys

information similar to that of the STAR program, but without concerns of secondary pro-

gram effects. We show how local air pollution changes with an increase in average quality

of local stations allowed to administer inspections and repairs. When a greater share

I/M stations are of high quality, an additional repair corresponds to a greater marginal

improvement in contemporaneous air pollution. However, the gains of estimated station

quality are again limited to repairs and re-inspections of older model cars. For newer cars

with modern emissions control technology, there is no economically meaningful benefit to

restricting repairs to high-quality stations. Between a decline in effectiveness of the overall

Smog Check program as older vehicles age out of the fleet and poor predictive power of

the actual STAR quality metrics, it is unlikely the new STAR program as designed will

further improve the effectiveness of Smog Check for reducing air pollution.
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Table 1: Average Daily Air Quality and Smog Check Inspections in California Counties,
1998-2009

Panel A: All California
CO (PPB) NOx (PPB) Ozone (PPB) PM10 (µ/m3) # Inspections # Re-Inspections Mean NOx I/M Reading (PPM)

1998 703.0 28.89 28.04 25.50 587.5 63.07 4.775
1999 716.2 32.40 28.32 31.00 678.5 74.12 5.226
2000 649.6 30.19 26.65 27.16 706.2 85.29 5.172
2001 612.1 27.68 27.60 27.79 755.2 93.99 5.012
2002 600.8 28.18 29.04 30.10 719.6 96.61 4.796
2003 562.6 26.36 28.69 26.78 825.0 107.2 4.688
2004 499.6 24.20 27.66 26.38 795.7 101.7 4.494
2005 458.4 24.23 26.60 24.05 669.7 84.99 4.684
2006 466.8 23.41 28.19 26.14 678.3 78.04 4.448
2007 431.7 22.05 27.61 25.90 667.6 73.65 4.265
2008 422.3 20.38 28.93 26.75 671.6 72.64 4.098
2009 363.5 18.03 27.66 22.18 688.5 73.90 3.958

Average 551.9 25.57 27.89 26.61 701.5 83.19 4.593

Panel B: Los Angeles County
CO (PPB) NOx (PPB) Ozone (PPB) PM 10 (µ/m3) # Inspections # Re-Inspections Mean NOx I/M Reading (PPM)

1998 1254.5 71.45 21.73 7064.1 814.8 4.915
1999 1203.6 79.36 20.78 8324.6 1023.0 5.305
2000 1029.1 70.98 20.73 8489.6 1121.0 5.274
2001 936.9 64.25 21.58 9015.2 1253.4 5.121
2002 869.9 60.89 24.30 37.60 9255.0 1318.1 4.931
2003 814.0 58.35 25.27 32.40 9328.7 1316.7 4.810
2004 663.9 51.49 26.49 32.41 9418.5 1271.9 4.621
2005 580.2 47.09 24.48 30.45 7838.1 1042.3 4.773
2006 548.8 47.35 25.48 29.98 7880.1 962.3 4.561
2007 506.6 43.86 25.05 33.32 7644.7 900.2 4.382
2008 470.3 40.49 25.93 30.66 7600.5 871.8 4.175
2009 417.4 35.99 26.59 29.86 7781.6 895.2 4.074

Average 774.6 55.96 24.04 32.06 8303.5 1065.9 4.757

Panel C: San Francisco Bay Area
CO (PPB) NOx (PPB) Ozone (PPB) PM10 (µ/m3) # Inspections # Re-Inspections Mean NOx I/M Reading (PPM)

1998 756.8 33.81 19.76 18.00 5078.1 422.3 4.872
1999 769.7 37.48 19.84 21.40 5571.8 403.6 4.534
2000 699.7 35.02 18.41 18.45 5941.3 514.9 4.100
2001 636.5 31.51 19.86 20.16 6223.4 567.5 3.955
2002 599.5 31.08 20.61 21.67 865.1 69.89 4.126
2003 569.4 27.56 20.41 16.55 3849.2 379.1 4.565
2004 502.9 25.80 20.43 17.32 6820.2 831.2 4.558
2005 486.7 25.51 20.21 16.31 5731.4 693.5 4.738
2006 466.9 24.93 21.90 18.34 5867.2 608.5 4.474
2007 418.2 23.18 21.68 16.47 5795.3 561.4 4.274
2008 387.5 21.82 22.80 17.44 5820.1 545.0 4.131
2009 350.4 21.08 21.24 14.21 5960.5 553.0 3.984

Average 553.7 28.23 20.60 18.07 5294.2 512.6 4.373

Note: Excludes counties and years where biennial inspections are not required
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Table 2: Re-Inspections and County-Level Daily Air Quality

A: Outcome is Carbon Monoxide (PPB)
(1) (2) (3) (4) (5)

000s of Re-Inspections Last 90 Days
1975-1985 Vehicles 42.50∗∗∗ 34.87∗∗∗ 36.38∗∗∗ 15.81∗∗∗ -14.43∗∗∗

(10.10) (8.450) (9.153) (2.168) (3.972)
1985+ Vehicles -2.390∗∗ -13.34∗∗∗ -10.55∗∗∗ -4.639∗∗∗ -4.226∗

(1.125) (4.708) (3.836) (1.104) (2.222)
County FE No Yes Yes Yes Yes
Weather Controls No No Yes Yes Yes
Calendar Week FE No No No Yes Yes
County Time Trends No No No No Yes

B: Outcome is NOx (PPB)
(1) (2) (3) (4) (5)

000s of Re-Inspections Last 90 Days
1975-1985 Vehicles 2.033∗∗∗ 1.454∗∗∗ 1.549∗∗∗ 0.863∗∗∗ -0.680∗∗

(0.318) (0.237) (0.289) (0.0917) (0.263)
1985+ Vehicles 0.150∗∗∗ -0.639∗∗∗ -0.456∗∗∗ -0.244∗∗∗ -0.788∗∗∗

(0.0382) (0.204) (0.146) (0.0451) (0.148)
County FE No Yes Yes Yes Yes
Weather Controls No No Yes Yes Yes
Calendar Week FE No No No Yes Yes
County Time Trends No No No No Yes

Observations 143440 143440 143440 143440 143440
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Note: Observations are county-days. Standard errors clustered by county reported in parentheses.
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Table 3: Station Quality and County-Level Air Pollution

A: Outcome is CO (PPB)
(1) (2)

000s of Re-Inspections Last 90 Days
1975-1985 Vehicles -14.43∗∗∗ 8.287∗

(3.972) (4.576)
1975-1985 Vehicles · C-FPR -98.07∗∗∗

(22.09)
Effect at Mean C-FPR -46.64 ∗∗∗

(9.769 )
1985+ Vehicles -4.226∗ -13.17∗∗∗

(2.222) (3.991)
1985+ Vehicles · C-FPR 23.32∗∗∗

(8.462)
Effect at Mean C-FPR 0.111

(2.611 )

B: Outcome is NOx (PPB)
(1) (2)

000s of Re-Inspections Last 90 Days
1975-1985 Vehicles -0.680∗∗ 1.628∗∗∗

(0.263) (0.281)
1975-1985 Vehicles · C-FPR -9.623∗∗∗

(1.340)
Effect at Mean C-FPR -3.695 ∗∗∗

(0.678 )
1985+ Vehicles -0.788∗∗∗ -1.741∗∗∗

(0.148) (0.276)
1985+ Vehicles · C-FPR 2.457∗∗∗

(0.453)
Effect at Mean C-FPR -0.366 ∗∗

(0.168 )
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Note: Observations are county-days. All regressions control for daily weather,
county fixed effects, calendar week fixed effects, and county-specific cubic time
trends. Standard errors clusted by county reported in parentheses.
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Table 4: Station Quality and County-Level Ozone Pollution

Base NOx Controls

(1) (2) (3) (4)

000s of Re-Inspections Last 90 Days
1975-1985 Vehicles -0.121 -0.485∗∗∗ -0.195∗∗∗ -0.259∗∗

(0.0809) (0.152) (0.0700) (0.127)
1975-1985 Vehicles · C-FPR 0.873∗∗ -0.401

(0.419) (0.405)
Effect at Mean C-FPR 0.0228 -0.480

(0.166 ) (0.177 )
1985+ Vehicles 0.176∗∗∗ 0.472∗∗ 0.0918∗∗ 0.248

(0.0490) (0.185) (0.0425) (0.154)
1985+ Vehicles · C-FPR -0.635∗∗ -0.307

(0.279) (0.244)
Effect at Mean C-FPR 0.0981 ∗ 0.0762 ∗

(0.0523 ) (0.0481 )
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Note: Observations are county-days. All regressions control for daily weather, county fixed
effects, calendar week fixed effects, and county-specific cubic time trends. Columns (3) and
(4) control for a quadratic in the level of NOx. Standard errors clusted by county reported in
parentheses.
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Table 5: Station Quality and County-Level PM10 Pollution

Outcome is PM10 (µ/m3)
(1) (2)

000s of Re-Inspections Last 90 Days
1975-1985 Vehicles -0.857 0.527

(0.605) (0.815)
1975-1985 Vehicles · C-FPR -4.236∗∗

(1.800)
Effect at Mean C-FPR -1.966 ∗∗

(0.861 )
1985+ Vehicles 0.132 -0.0936

(0.170) (0.392)
1985+ Vehicles · C-FPR 0.634

(0.503)
Effect at Mean C-FPR 0.283 ∗

(0.166 )
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Note: Observations are county-weeks. All regressions control for daily
weather, county fixed effects, calendar week fixed effects, and county-specific
cubic time trends. Standard errors clusted by county reported in parenthe-
ses.

Table 6: Consumers’ Shopping Behavior After a Failed Initial Inspection

Total Number of Inspections in Cycle
All 2 3 4 5+

Final Inspection Within 1 week 0.603 0.659 0.388 0.281 0.207
Final Inspection At Same Station 0.644 0.695 0.438 0.372 0.323
Switchers’ Change in C-FPR -0.0442 -0.0332 -0.0681 -0.0746 -0.0706

N 16317721 13311589 2219152 537029 249951

Statistics are means. A unit of observation is an inspection cycle, limited to cycles with more than
one inspection, with no “gross” failures. “Final Inspection at Same Station” is equal to 1 if the first
and last inspection in the cycle are at the same station. “Switchers’ change in SVFR” is the difference
between the SVFR score of the first and last station in the inspection cycle; “Switchers’ change in
C-FPR” is calculated similarly.
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Table 7: Predicted 2009 Station Quality and Pollution, Simulating an Ideal and Real
STAR Program

All CA LA County Bay Area San Diego

C-FPR Score
Baseline 0.597 0.393 0.632 0.328
Re-assign using C-FPR 0.772 0.651 0.787 0.698
Reassign using SVFR & FPR 0.664 0.458 0.695 0.416

CO Level (PPB)
Baseline 363.9 453.3 341.3 611.9
Re-assign using C-FPR 352.9 378.1 337.5 577.7
Reassign using SVFR & FPR 360.5 434.1 340.2 603.9

NOx Level (PPB)
Baseline 17.54 38.43 20.95 23.94
Re-assign using C-FPR 16.67 31.04 20.58 20.59
Reassign using SVFR & FPR 17.25 36.54 20.84 23.16

PM10 Level (µ/m3)
Baseline 20.92 28.63 16.73 28.70
Re-assign using C-FPR 20.59 25.37 16.57 27.23
Reassign using SVFR & FPR 20.81 27.79 16.67 28.36

Notes: Baseline scenario shows actual average C-FPR and predicted CO and NOx from the
model in column 2 of table 3. “Reassign using C-FPR” redistributes inspections at stations
with C-FPR below 0.4 to stations which pass these measures, recalculates the county average
C-FPR accordingly, and predicts CO and NOx. “Reassign to STAR Stations” redistributes
inspections at stations failing the SVFR and FPR threshholds to stations which pass these
measures.
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Figure 1: STAR Metrics of Re-inspection Station and Log CO Emissions at Next Inspec-
tion
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(C) Contemporaneous FPR (C-FPR)

Notes: Graphs show the link between three different possible measures of I/M station

quality and future carbon monoxide emissions rates of vehicles at later tests. We obtain

the results by regressing changes in emissions levels between the previous and current

initial tests (y-axis) on a series of 10 indicators equal to 1 if a tested car falls into one

of the 10 equally-spaced bins that cover the distribution of the quality measure, and 0

otherwise. In the case of all three metrics, an increase in the measure should indicate an

increase in station quality as determined by the specific measure. Panels (A) and (B) show

the STAR program measures of station quality. Panel (C) shows our alternate measure

of station quality, which uses observed future tests to ex post evaluate the effectiveness of

a nominal repair to a failing vehicle. We split results by initial inspection outcomes (pass

vs. fail).
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Figure 2: Average Smog Check Measured Emissions by Model Year
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Notes: Graphs show the total combined measured tailpipe emissions at initial test for

carbon monoxide (left) and nitrogen oxides (right) from cars that fail (blue line) or pass

(red line) initial inspection by model year.
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Figure 3: Effect of re-inspections on Daily Air pollution, by FPR Score of Test Stations
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Notes: Graphs show the change in measured county-level air quality for carbon monoxide

(CO, top) and nitrogen oxides (NOx, bottom) resulting from an additional 1,000 nominal

repairs (as proxied by a successful re-inspection of an initially failed vehicle) done at

stations of respective quality as measured across 20 equally-spaced bins covering the full

range of our C-FPR measure (see section 4.1). We split results by older (pre-1985) and

newer (1985 and onward) model-year vehicles. LOWESS best-fit lines use a bandwidth

of of N ∗ 0.8.
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Figure 4: Effect of re-inspections on Daily Ozone Levels, by FPR Score of Test Stations
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Notes: Graphs show the change in measured county-level air quality for ozone (O3)

resulting from an additional nominal 1,000 repairs (as proxied by a successful re-inspection

of an initially failed vehicle) done at stations of respective quality as measured across

20 equally-spaced bins covering the full range of our C-FPR measure (see section 4.1).

We split results by older (pre-1985) and newer (1985 and onward) model-year vehicles.

LOWESS best-fit lines use a bandwidth of of N ∗ 0.8.
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Figure 5: Effect of re-inspections on Weekly PM10 Levels, by FPR Score of Test Stations
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Notes: Graph shows the change in measured county-level air quality resulting from an

additional 1,000 nominal repairs (as proxied by a successful re-inspection of an initially

failed vehicle) done at stations of respective quality as measured across 20 equally-spaced

bins covering the full range of our C-FPR measure (see section 4.1). We split results by

older (pre-1985) and newer (1985 and onward) model-year vehicles. LOWESS best-fit

lines use a bandwidth of of N ∗ 0.8.
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Figure 6: Predicted Percent Change in Pollution Levels From Re-inspecting All 1975–1985
vehicles at STAR stations

(A) (B)

(C) (D)

Notes: Maps show the simulation-based differences in air quality assuming that all 1975-

1985 model year cars that failed their initial inspections been re-inspected at stations

considered of high quality based on the current STAR metrics. Panels (A) and (C) show

simulated differences in ambient CO, while panels (B) and (D) show simulated differences

in ambient NOx. Darker shades indicate larger improvements in air quality under our

simulation. Gray counties are those for which we have either no emissions data or limited

inspection data (i.e. biennial inspections are not required). See section 6 for details of

our simulation process.
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Figure 7: Costs and Benefits of the Smog Check Program, by Year
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Notes: Graph shows the estimated costs and benefits of the Smog Check program, in

millions of dollars, across time. We derive costs using estimated cost-of-test and cost-of-

time measures, which generate a total cost of $27.86 per test. We derive benefits using

estimates of pollution on mortality from the economics literature. See section 6.2 for

calculation details.
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A Appendix

Table A1: Re-Inspections and County-Level Daily Air Quality: Robustness Checks

A: Outcome is Carbon Monoxide (PPB)
30 Days 60 Days 90 days 120 days

000s of Re-Inspections in Window
1975-1985 Vehicles -44.79∗∗∗ -24.09∗∗∗ -14.43∗∗∗ -8.260∗∗∗

(10.57) (5.995) (3.972) (2.947)
1985+ Vehicles -11.73∗∗ -7.259∗∗ -4.226∗ -1.779

(5.256) (3.178) (2.222) (1.647)
County FE Yes Yes Yes Yes
Weather Controls Yes Yes Yes Yes
Calendar Week FE Yes Yes Yes Yes
County Time Trends Yes Yes Yes Yes

B: Outcome is NOx (PPB)
30 Days 60 Days 90 days 120 days

000s of Re-Inspections in Window
1975-1985 Vehicles -2.243∗∗∗ -1.308∗∗∗ -0.680∗∗ -0.206

(0.667) (0.397) (0.263) (0.179)
1985+ Vehicles -1.860∗∗∗ -1.257∗∗∗ -0.788∗∗∗ -0.423∗∗∗

(0.365) (0.225) (0.148) (0.0981)
County FE Yes Yes Yes Yes
Weather Controls Yes Yes Yes Yes
Calendar Week FE Yes Yes Yes Yes
County Time Trends Yes Yes Yes Yes

Observations 143440 143440 143440 143440
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Note: Observations are county-days. Standard errors clustered by county reported in paren-
theses.
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Table A2: Re-Inspections and County-Level Daily Air Quality: Robustness Checks

CO NOx

000s of Re-Inspections Last 90 Days
1975–1985 Vehicles -15.41∗∗∗ -0.737∗∗

(4.001) (0.277)
1985-1995 Vehicles -3.059 -0.720∗∗∗

(2.425) (0.207)
1995+ Vehicles -6.377∗ -0.910∗∗∗

(3.370) (0.210)
County FE Yes Yes
Weather Controls Yes Yes
Calendar Week FE Yes Yes
County Time Trends Yes Yes

Observations 129260 143440

Standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table A3: Re-Inspections and County-Level Daily Air Quality: Robustness Checks

A: Outcome is Carbon Monoxide (PPB)
(1) (2) (3) (4) (5)

000s of Re-Inspections Last 90 Days
1975-1985 Vehicles -14.43∗∗∗ -28.22 -14.42∗∗∗ -9.600∗∗ -15.56∗∗∗

(3.972) (18.19) (3.971) (4.562) (4.223)
1985+ Vehicles -4.226∗ -2.986 -4.205∗ -4.068 -5.135∗∗

(2.222) (5.920) (2.223) (2.443) (2.301)
County FE Yes Yes Yes Yes Yes
Weather Controls Yes Yes Yes Yes Yes
Calendar Week FE Yes Yes Yes Yes Yes
County Time Trends Yes Yes Yes No No
Exclude LA No Yes No No No
Month-of-Year and Day-of Week FE No No Yes No No
County-Year FE No No No Yes No
Weekly Data No No No No Yes

B: Outcome is NOx (PPB)
(1) (2) (3) (4) (5)

000s of Re-Inspections Last 90 Days
1975-1985 Vehicles -0.680∗∗ -0.951 -0.678∗∗ -0.258 -0.760∗∗∗

(0.263) (1.010) (0.262) (0.209) (0.255)
1985+ Vehicles -0.788∗∗∗ -0.716∗∗ -0.786∗∗∗ -0.801∗∗∗ -0.839∗∗∗

(0.148) (0.328) (0.148) (0.211) (0.143)
County FE Yes Yes Yes Yes Yes
Weather Controls Yes Yes Yes Yes Yes
Calendar Week FE Yes Yes Yes Yes Yes
County Time Trends Yes Yes Yes No No
Exclude LA No Yes No No No
Month-of-Year and Day-of Week FE No No Yes No No
County-Year FE No No No Yes No
Weekly Data No No No No Yes

Observations 143440 139057 143440 143440 20505
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
Note: Observations are county-days. Standard errors clustered by county reported in parentheses.
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Table A4: Station Quality and County-Level Ozone

(1) (2)

Low NOx Days
1975-1985 Vehicles 0.205 0.335

(0.176) (0.470)
1975-1985 Vehicles · C-FPR -0.670

(1.219)
1985+ Vehicles Vehicles 0.211∗∗∗ 0.202

(0.0624) (0.233)
1985+ Vehicles · C-FPR 0.106

(0.458)
High NOx Days

1975-1985 Vehicles -0.188∗∗ -0.553∗∗∗

(0.0709) (0.149)
1975-1985 Vehicles · C-FPR 0.556

(0.427)
1985+ Vehicles Vehicles 0.0657 0.411∗∗∗

(0.0412) (0.130)
1985+ Vehicles · C-FPR -0.770∗∗∗

(0.267)

Observations 143049 143027

Note: Observations are county-days. All regressions control for
daily weather, county fixed effects, calendar week fixed effects,
and county-specific cubic time trends. Low and high NOx days
are days with NOx levels below (above) the median NOx level
of 18 ppb. Standard errors clusted by county reported in paren-
theses.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table A5: Emissions levels by Inspection Reason

(1) (2) (3) (4)
Ln(HC) Ln(NOx) Ln(CO) P(Fail)

Change of Ownership
Model Years 1976-1985 0.0304∗∗∗ -0.00708∗∗ 0.0270∗∗∗ -0.00610∗∗∗

(0.00159) (0.00258) (0.00285) (0.000557)

Model Years 1985+ 0.0704∗∗∗ 0.0297∗∗∗ 0.0617∗∗∗ 0.00176∗∗∗

(0.000696) (0.00127) (0.000790) (0.000197)

Initial Registration
Model Years 1976-1985 0.0473∗∗∗ -0.101∗∗∗ 0.0465∗∗∗ -0.00195

(0.00259) (0.00395) (0.00488) (0.00104)

Model Years 1985+ 0.201∗∗∗ 0.171∗∗∗ 0.202∗∗∗ 0.0149∗∗∗

(0.00212) (0.00354) (0.00243) (0.000254)

Odometer (00000s) 0.340∗∗∗ 0.480∗∗∗ 0.378∗∗∗ 0.0628∗∗∗

(1.05e-08) (2.67e-08) (1.27e-08) (3.25e-10)

Years Since Last Inspection 0.0109∗∗∗ 0.0135∗∗∗ 0.0213∗∗∗ 0.0112∗∗∗

(0.000270) (0.000458) (0.000369) (0.0000982)

ASM Test 0.392∗∗∗ 0.253∗∗∗ 0.478∗∗∗ 0.0339∗∗∗

(0.00337) (0.00425) (0.00474) (0.000519)

Vehicle Age FE Yes Yes Yes Yes

Calendar Quarter FE Yes Yes Yes Yes

County FE Yes Yes Yes Yes

VIN Prefix FE Yes Yes Yes Yes

N 124575462 95543435 124575462 124586809

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Figure A1: STAR Metrics of Re-inspection Station and Log NOx Emissions at Next
Inspection
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(B) STAR FPR Score
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(C) Contemporaneous FPR (C-FPR)

Notes: Graphs show the link between three different possible measures of I/M station

quality and future NOxemissions rates of vehicles at later tests. We obtain the results

by regressing changes in emissions levels between the previous and current initial tests

(y-axis) on a series of 10 indicators equal to 1 if a tested car falls into one of the 10

equally-spaced bins that cover the distribution of the quality measure, and 0 otherwise.

In the case of all three metrics, an increase in the measure should indicate an increase in

station quality as determined by the specific measure. Panels (A) and (B) show the STAR

program measures of station quality. Panel (C) shows our alternate measure of station

quality, which uses observed future tests to ex post evaluate the effectiveness of a stated

repair to a failing vehicle. We split results by initial inspection outcomes (pass vs. fail).
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Figure A2: Residual variation in 90-day rolling totals of re-inspections after controlling
for covariates in preferred regression specification.
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Notes: Residual results split by county.
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Figure A3: Share of Daily Total Re-Inspections that are 1975–1985 Model Year (LOWESS
Smoothed)
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Notes: Graph shows the share of re-inspections, by year and region, that are for cars of

the 1975—1985 model year range. Vertical axis represents share of total (e.g., 0.1 is 10%).
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Figure A4: I/M Emissions Inspection Failure Rates By Model Year, 2002 and 2009
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Notes: Lines show the initial failure rate for inspections done in the year 2002 (blue

line) and the year 2009 (red line). Vertical axis shows the initial failure rate, while the

horizontal axis shows the relevant model year of the tested vehicle.
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