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Abstract

We propose a novel approach to person-level record linkage in administrative data,
a procedure and setting that is increasingly at the frontier of economic research. We
build a supervised learning algorithm trained on fingerprint identifiers that act as
an unbiased measure of true match status. Both the size and nature of the training
data yield performance that substantially improves on existing literature, especially for
women and minorities. We demonstrate model effectiveness in deduplication and record
linkage applications, and extendibility to dissimilar populations from the training data.
Simulation exercises illustrate how matching performance impacts internal and external
validity, and statistical precision.

Keywords: Record Linkage, Probabilistic Matching, Administrative Data, Criminal Justice
JEL Codes: C18, C81, C88

∗Department of Economics, University of Michigan, mbgross@umich.edu
†Department of Economics, University of Michigan, mgms@umich.edu
Acknowledgements: We thank Martha Bailey, John Bound, Charlie Brown, Aaron Chalfin, Connor Cole,

James Feigenbaum, Keith Finlay, Sara Heller, Kirabo Jackson, Emily Nix, Joseph Price, Mel Stephens, Jesse
Rothstein, Sarah Tahamont, and Chelsea Temple for their comments and suggestions on this project. Jay
Choi, Madeleine Danes, Francis Fiore, Jordan Papp, Benjamin Pyle, Lyllian Simerly, David Smith, Brittany
Street, and Peixin Yang provided excellent research assistance. This research was performed with the generous
financial support of the National Science Foundation (#1925563), the Bill and Melinda Gates Foundation,
the Laura and John Arnold Foundation, the Michigan Institute for Teaching and Research in Economics, and
the University of Michigan Population Studies Center.

mbgross@umich.edu
mgms@umich.edu


Gross and Mueller-Smith (2021) Draft date: May 12, 2021

1 Introduction

With the revolution in information technology, social science and policy researchers now have
access to more data and computing power than ever. Increasing data availability, especially
when linked, gives us the ability to answer new important questions. Recent work on economic
mobility (Chetty et al., 2016; Chetty and Hendren, 2018a,b), crime prevention (Heller et al.,
2016), health (Finkelstein et al., 2012), environmental policy (Keiser and Shapiro, 2018) and
the long term impacts of the great recession (Yagan, 2019) represent a small sample of topics
being advanced through the utilization of linked data.

The number of papers citing “administrative data” among “top five” economics journals
has rapidly increased in recent decades, especially since 2010 (see Figure 1).1 These outlets
together published 7 articles mentioning administrative data per year between 1995 and 2010;
by 2017-2019, the corresponding figure grew to 54. Yet, the fastest growing type of cutting
edge data – administrative records – are created without the primary intention of research
applications and are instead a byproduct of the regular activities of public agencies, private
businesses, or non-profits. So while administrative data clearly is now a major component of
modern economic research, social scientists are regularly confronted with needing to develop
and deploy an array of empirical methods to prepare non-research data for analysis purposes.

One of the most common tasks is record linkage, which merges rows of observations from
two or more data sources using common identifiers available in the different data sources.2 In
the absence of accurate, unique identifiers, researchers must rely on similarity comparisons
of plausibly identifying variables common to all data.3 This raises questions of how best to
quantify similarity, which variables to weigh more or less, and what index threshold should
be established to merit a statistical match. Traditionally, most researchers rely on either
deterministic rules (e.g. perfect match on first name, last name, and date of birth) for the
sake of simplicity or probabilistic linear models trained on a subset of hand-coded records
that undergo a clerical review to establish plausible true match status (see Table 1).4

1These are The American Economic Review, Econometrica, The Journal of Political Economy, The
Quarterly Journal of Economics, and the Review of Economic Studies.

2Another form of record linkage, as in the focus of this paper, is identifying who is the same individual
across rows in the same dataset without a reliable unique identifier (e.g. deduplication). This distinction is
somewhat arbitrary as any deduplication problem can be restated as a matching problem.

3Also referred to as probabilistic matching, entity resolution, or fuzzy matching.
4Depending on the setting and application, hand-coded training samples can range from as little as 50 to

as many as 80,000 observations. For example, recent work by Abowd et al. (2019), Wisselgren et al. (2014),
and Feigenbaum (2016) hand-code 1,000, 8,000, and 80,000 observations respectively. In general however, the
hand-coded samples used to estimate supervised learning models are somewhere between 500 and 10,000
observations.
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This paper introduces a different approach leveraging a unique source of previously
unexploited data. We use biometrically linked (fingerprint-matched) records from the U.S.
criminal justice system to construct unbiased measures of true match status. While the
administrative data is drawn from a highly selected portion of the general population (i.e.
those accused of criminal activity or in prison for criminal conduct), it provides trillions of
potential training pairs to fine tune a high-dimensional, non-linear, machine learning based
linkage model that would otherwise be cost-prohibitive or impractical to estimate. The data
is comprised of decades of personally identifiable information (PII) from two separate sources:
(1) misdemeanor and felony defendants in criminal cases from a large district court and (2)
incarcerated individuals from a state Department of Corrections. Both data sets include
biometric ID numbers as well as the inconsistent, flawed PII information as originally entered
into the data system.5

We compare the performance of a range of matching strategies from simple deterministic
rules to more sophisticated prediction algorithms like random forests and neural networks.
Our preferred specification is a demographic enhanced random forest specification that allows
the determinants of PII match quality to flexibly vary by race/ethnicity and sex, tailoring the
prediction according to the differential naturally occurring and error-induced variation in PII
by demographic group. We also evaluate the relative gains of integrating a large, biometrically
verified training sample compared to a feasible set of hand-coded training data, conditional on
matching algorithm. We find that human coders tend to be overly conservative in assigning
true match status through the process of clerical review, especially for Hispanic individuals
and women.6 Allowing our machine learning algorithm to train on a 1 million observation
sample strengthens performance on both recall (% of true matches correctly identified) and
precision (% of statistical matches that are correct), demonstrating significant gains over
typical sample sizes for model estimation.

Because our training data is highly selected, non-representative of the general population,
and drawn only from the state of Texas, it is appropriate to question its general relevance
beyond criminal justice applications and in the U.S. overall. We conduct three exercises to
evaluate the degree of performance degradation as we extrapolate to other contexts with
increasingly dissimilar populations: (1) a deduplication of multi-state prison data from a
single date in time to assess national scaleability,7 (2) a one-to-one record linkage of registered

5While there are a number of criminal justice data repositories that leverage fingerprint based IDs, often
the incorrect PII is overwritten to standardize entries therefore eliminating its use as training data.

6This is largely the result of an over-reliance on name similarity over date of birth similarity when
determining hand-coded match status.

7The goal in this exercise is to evaluate whether the algorithm incorrectly identifies a single person as
being in two places at the same time.
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Washington voters in 2008 and 2012 to assess performance in a more representative population,
and (3) entity resolution applied to corrupted synthetic data created from all deaths in the U.S.
between 2000 and 2009 from the Social Security Administration’s Death Master File (DMF)
to assess model degradation among large populations with higher likelihood of naturally
occurring PII similarity.8 Across all three exercises, we surprisingly observe strong performance
close to matching or exceeding the effectiveness of the model in our main application.

Another useful finding from these exercises is the broad applicability of our approach to
both record linkage (matching rows across datasets) and deduplication (matching rows within
a dataset) problems. These two matching problems are closely related; for example, any
deduplication exercise can be restated as a record linkage exercise.9 But, specific applications
generate important distinctions; a one-to-one record linkage problem does not allow for
independent error terms, which is not necessarily the case for deduplication . The performance
stability of the algorithm across these diverse applications, broadens the relevance of our
findings to a range of contexts.10

While details on matching often get shortchanged in academic publications,11 the common
matching performance metrics of recall and precision directly relate to concepts of internal
and external validity in causal inference, which empirical researchers care about. To illustrate
these points, we conduct a series of simulation exercises that increasingly corrupt the record
linkage process and track the resulting impact on parameter bias and inference. We consider
two common scenarios: (1) designs where a matched record is an indication that an outcome
has occurred (e.g., recidivism, employment, or public program take-up) for an individual, and
(2) situations where analysis is conditioned on being in the matched sample (e.g. wage effects
among those who file taxes, or health care utilization among those with Medicaid coverage).
In the first scenario, we show that errors in recall and precision systematically attenuate the
estimated coefficient of interest and impair statistical precision, making it less likely that the
null hypothesis of a null effect will be rejected. In the second scenario, errors in precision lead

8We generate several synthetic data sets by corrupting names and dates of birth in the spirit of Tran et al.
(2013) to determine performance in the event of different transcription and data entry errors. See Appendix C
for more details.

9In lieu of matching set A to set B, simply consider matching set A to set A (itself) excluding pairwise
exact matches.

10In fact, the model developed in this paper simultaneously serves both record linkage and deduplication
purposes in practice in constructing the Criminal Justice Administrative Record System’s (CJARS) (see
Finlay and Mueller-Smith (2021) through identifying unique individuals both within and across criminal
justice administrative datasets from jurisdictions around the United States.

11Recent literature has explored the concept of data matching strategies and it’s implications for empirical
research in specific contexts. See, for example, Bailey et al. (2017) and Abramitzky et al. (2019) for a discussion
of historical data linkage and Tahamont et al. (2019) for a discussion on linking an experimental intervention
to administrative data.
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to a similar attenuation effect and lack of statistical precision; however, errors in recall lead
to inflated estimates of the effect of interest. This last fact is directly related to the concept
of external validity, where the observations that are successfully matched and included in the
analysis sample are not representative of the general population.

The remainder of the paper is organized as follows. The next section of the paper reviews
relevant literature. The third section discusses the algorithm methodology, while section four
reports results from our out of sample tests. The fifth section reports results from performing
the algorithm on synthetic data, and the sixth section concludes.

2 Statement of Linkage Problem and Related Literature

There is a large and diverse literature devoted to record linkage and probabilistic matching.
Whether aiming to identify common entities within a given dataset (i.e. deduplication)
or combining two or more datasets without a unique linking variable (i.e. record linkage),
a range of statistical techniques and methodologies have been developed. Although the
goals of deduplication and record linkage are different in practice, the underlying theory
and methodology are closely related as either problem can be restated as the other with
only modest restrictions imposed. For example, a historical linkage of two census waves
can be thought of as a one-to-one match between two separate datasets; or alternatively, a
deduplication using the two waves appended together and limiting to singular matches among
observations from different sources. Both linkage strategies would generate the same matches
in practice if using the same underlying prediction model.

Record Linkage and Economic Research

In most economic applications, researchers leverage matching techniques as tools to support
the analysis of two or more linked datasets. As researchers have noted, however, the linkage
process itself becomes an added source of error that can have serious implications on estimated
coefficients and standard errors (Scheuren and Winkler, 1993). For example, Scheuren and
Winkler (1997) report a simulation where a naive estimator based on a faulty match is
attenuated by as much as 60%. The authors propose an iterative methodology that corrects
for errors in the match stage. Although based on an “ad hoc” modeling intervention, their
method allows them to account for matching errors when estimating the regression of interest.
They show that their proposed method allows them to recover nearly all of the attenuated
coefficient. Lahiri and Larsen (2005) propose an unbiased estimator using match probabilities
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estimated by the linkage procedure as regression weights.In addition, they also propose a
bootstrapping method to achieve closer coverage of the unbiased confidence interval. In
the simulation exercises, the estimator proposed by Lahiri and Larsen outperforms the one
proposed in Scheuren and Winkler (1997); however, the assumption of independence between
match probabilities and outcome variables is somewhat restrictive and likely to be violated
in many cases.12 Lastly, Abowd et al. (2019) use a multiple imputation method to build
10 imputed datasets to account for errors in the linkage process. As an application of their
methodology they show that the wage-firm size gradient as measured by surveys is overstated.

Bailey et al. (2017) review some common algorithms used to link historical datasets
and show how different linking strategies can attenuate estimates of the intergenerational
income elasticity. In the context of historical record linkage, matching algorithms are often
used to perform a one-to-one match between successive Census waves. The authors link the
LIFE-M data and the 1940 Census to measure the intergenerational income elasticity of men
with regard to their fathers.13 Then, they attempt the link using methodologies previously
published in the historical record linkage literature to see how each method yields different
intergeneration elasticity of income estimates. They show that the choice of linkage method
can lead to attenuation bias, with some estimates off by as much as 20% of the underlying
true value.

Tahamont et al. (2019) show how in modern settings – e.g. linking administrative data with
a randomized control trial to track binary outcomes – the linkage choices can impact statistical
precision and attenuate the estimated treatment effect. The relevant research design occurs
when a researcher attempts to link a treatment to an external (often administrative) dataset
where the match status determines the outcome variable of interest. There are numerous
examples of this type of design, such as measuring the effects of crime policy on recidivism
and labor market outcomes (Mueller-Smith and Schnepel, 2021), the effects of job retraining
programs on employment (Biewen et al., 2014) or the effects of payday loans on financial
outcomes Skiba and Tobacman (2019) among many others. Tahamont et al. show that overly
conservative matching strategies, such as mandating a match only on perfect agreement of
comparison variables, can attenuate estimated causal treatment effects and reduce statistical
power. The authors also show that probabilistic algorithms, despite increasing the number of
false positive matches, perform better than strict algorithms by increasing the number of
true positive matches.

12We explore a simulation where this assumption does not hold in section 6.
13Information about the LIFE-M data linking project can be found at https://sites.lsa.umich.edu/

life-m/
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Economics research utilizing linked records has become more prevalent given the increase in
reliance on administrative data. Recent examples of the kind of data that can be linked include
Federal Government data sources such as IRS tax records and U.S. Census Bureau Records
(Chetty et al., 2016; Chetty and Hendren, 2018a,b), randomized control trial participation
records, public school records and arrest records (Heller et al., 2016), health insurance records,
hospital discharge records and credit bureau records (Finkelstein et al., 2012) and pollution
records and grants for pollution abatement (Keiser and Shapiro, 2018). These data are
generated by a mix of public and private sources and represent a small sample of the types of
data that can be linked.

Defining Record Linkage

Fellegi and Sunter (1969) provide one of the earliest formalizations of the record linkage
problem. Specifically, given two sets, A and B, which contain elements a and b, one seeks to
identify which elements of A and B are common to both sets. The full set of ordered pairs

A×B = {(a, b); a ∈ A, b ∈ B}

is the union of two disjoint sets

M = {(a, b); a = b, a ∈ A, b ∈ B}

and
N = {(a, b); a 6= b, a ∈ A, b ∈ B}

which together account for all matches and non-matches among the ordered pairs.

The elements of A and B are assumed to contain a vector of common variables that
provide identifying information (e.g. names, addresses, demographic traits, etc), but lack the
certainty of a known unique identifier. A comparison function γ is defined to quantify the
similarity of the identifying information for a given pair

γ(a, b) =
{
γ1 [α(a), β(b)] , · · · , γK [α(a), β(b)]

}
over K dimensions from the full set of ordered pairs in A×B.

To complete the algorithm, one must define a decision rule mapping the comparison space,
Γ, to one of three possible designations: a statistical match (MS), a statistical non-match

6



Gross and Mueller-Smith (2021) Draft date: May 12, 2021

(NS) , or statistical uncertainty (US).

MS =
{

(a, b);P (M|γ) > P (N|γ), P (M|γ) > ρU , a ∈ A, b ∈ B)
}

NS =
{

(a, b);P (N|γ) > P (M|γ), P (N|γ) > ρU , a ∈ A, b ∈ B)
}

US =
{

(a, b); ρU > P (M|γ) + P (N|γ), a ∈ A, b ∈ B)
}

where ρU represents a baseline probability threshold for asserting statistical match or non-
match status. Fellegi and Sunter (1969) define these together as the linkage rule.

Putting aside the issue of pairs with uncertain designations, the linkage result will be a
statistical designation of match status, which may contain type I and type II errors.

(a, b) ∈MS (a, b) ∈ NS

(a, b) ∈M True Positive False Negative
(a, b) ∈ N False Positive True Negative

Algorithmic Approaches to Record Linkage

Operationalizing record linkage requires defining comparison functions and threshold values
for determining predicted match status. Two related approaches are most frequently used in
modern record linkage: (1) deterministic and (2) probabilistic.

In simple applications of deterministic algorithms, two records are classified as a match or
non-match based on the exact match of one or more variables common to both records. In
some deterministic models, paired observations must match on all common variables to be
classified as a match. In other settings with a rich set of matching variables, multiple linkage
rules are defined to allow for more flexibility in the match process (Setoguchi et al., 2014, for
example). Lastly, some deterministic models utilize an “iterative method” of rules to identify
matches (Ferrie, 1996; Abramitzky et al., 2012, 2014; Dahis et al., 2019, for example). In
general, the researcher determines the rules used to classify matches based on the setting and
the variables available. For example, data that includes Social Security numbers will leverage
this variable at the expense of agreement on address or middle name; however, researchers
attempting to link data that includes only name and date of birth may specify that the last
name must be the same to consider two records a match.

Probabilistic algorithms, on the other hand, attempt to predict the match probability of any
two observations based on the relative agreement of their matching variables. This requires
the additional step of defining comparator functions that measure the degree of non-exact
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similarity between two potential comparison values (e.g. “Mike” as opposed to “Michael”).
But, this approach has benefits over the purely deterministic models in that it more flexibly
sets a decision rule that optimizes the tradeoff between making more matches and limiting
false matches (Mèray et al., 2007; Tromp et al., 2011; Moore et al., 2016), especially in settings
where there is no direct identifier such as Social Security Number (Dusetzina et al., 2014).

Fellegi and Sunter propose a weighting system that places different value on each variable
used to determine a statistical match or link. These weights are based on the underlying
probability that a variable will match given that (a, b) are a true match and the probability
that a variable will match given that (a, b) are a true non-match. Once the weights are
estimated, it is possible to calculate a composite score for any pair of observations from A
and B, and use a threshold system where observations above a certain cumulative score are
classified as a statistical match.

Building on Fellegi and Sunter (1969), Jaro (1989) and Larsen and Rubin (2001) use an
Expectation-Maximization (EM) routine to estimate the underlying match weights in the
classic Fellegi-Sunter (F-S) framework. Sadinle and Fienberg (2013) extends the model by
proposing a F-S model that matches observations between three different sets instead of two.
The EM routine is especially useful when the researcher does not have access to training
data, as the match weights are determined through a process of picking weights to maximize
an objective function, followed by clerical review. The process is repeated until the researcher
is satisfied with the identified matches.

More recently, researchers have estimated match weights using insights from machine or
supervised learning. These algorithms typically require training data to estimate a model
for out of sample prediction (Feigenbaum, 2016; Abowd et al., 2019) with the resulting
match predictions depending both on the quality of the model as well as the accuracy of the
training data. Recent work on commonly used training data sets underscores the importance
of training data accuracy by showing that errors in the training data are particularly costly
when estimating non-linear or higher feature machine learning models (Northcutt et al., 2021).
Elaborate models can overlearn from the improperly labeled training set, leading to situations
where simpler models may actually outperform high feature models.

Usually training data is created by manually determining match status for a sample of
paired observations through a process referred to as clerical review.14 This process can be

14A notable exception is the paper by Price et al. (2019), which leverages a public family-tree website to
generate a large training sample of “true links.” This method is an improvement over typical clerical-review
generated training sets since the people identifying matches have more information and a higher incentive to
create correct links than a standard hand-coder.
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time consuming and expensive, which limits the available sample size for training models.
With training data in hand, however, one can extrapolate predicted match status for the
remainder of paired observations using one of many possible statistical models. Feigenbaum
(2016) attempts to match individuals from the 1915 Iowa State Census to the 1940 Federal
Census. He runs a probit regression of true match status on a host of match variables using
available training data. The probit model estimates the predicted probability of a match
given a vector of match variables. Once this model is recorded, he uses it to estimate matches
from the full sample of the data. Other non-regression based classifier algorithms that can be
used to make predictions include neural networks, Naive Bayes Classifiers (NBC), Support
Vector Machines (SVM) and Random Forests.15 We discuss these alternative algorithms in
the latter part of the paper.

Lastly, a newer class of probabilistic models have recently been proposed utilizing Bayesian
techniques (Steorts et al., 2016; Fortini et al., 2001, for example). From a practical perspective,
the complexity of these algorithms require more computational power and lack scaleability for
administrative data applications which often contain hundreds of thousands if not millions of
observations; however, one of the benefits of Bayesian models is that they more naturally
allow the researcher to directly characterize and account for matching error in the analysis
stage (Steorts, 2015).

3 Data and Background

We utilize a novel method for identifying true matches and generating training data by
leveraging finger-print based identifiers found in two criminal justice data sources. The
training data is then used to estimate the model described in Section 4. The first training
data source comes from the Harris County Justice Information Management System (JIMS)
in Texas and includes personally identifying information (PII) for all criminal defendants
for cases charged between 1980 and 2017. Harris County creates a system person number
(SPN) to track individuals across interactions within JIMS. This SPN is a biometric ID
that is tied to one’s fingerprints, meaning that it should uniquely identify individuals 16 and

15Feigenbaum (2016) also estimates versions of Random Forest and SVM models.
16Fingerprint uniqueness is generally accepted; however, there is some concern that the automated methods

used to match fingerprints use substantially less information than a full print and therefore increases the
chances of false positives (Pankanti et al., 2002). Comparisons of fingerprint matching technology suggest
that the state of the art systems have false positive and negative rates of approximately 0.1% (Maltoni et al.,
2017; Watson et al., 2014).
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remain relatively constant over time.17 An individual with multiple charges and appearances
in court will show up many times in the Harris County data. The SPN number links the
same individual across charges; however, the PII recorded for each individual charge has
not been synchronized. This creates a data system where the same SPN can have different
combinations of PII. These differences could be caused by typographic errors, legal name
changes, or the use of an alias. Our data contains 1,317,063 unique SPN, and 1,722,575 unique
combinations of name and date of birth, indicating approximately 1.31 combinations of PII
within each SPN.18

The second data source we use to generate our matching algorithm is from the Texas
Department of Criminal Justice (TDCJ). This data includes PII for inmates in the Texas
state prison system between 1978 and 2014. In addition to PII, the TDCJ data also contains
a biometric identifier, the Texas State Identification Number (SID), which is also built off of
fingerprints. Similar to the Harris County data, the recorded PII varies within a given ID. In
total, there are 905,528 unique IDs and 1,042,450 unique PII combinations, implying slightly
less PII variation within a given ID relative to Harris County data.19

While there are overlapping populations between the TDCJ and JIMS data systems and
their biometric IDs are built off of the same underlying variation (fingerprints), the systems
have not been unified and so there does not exist a unique SPN to SID crosswalk. As such,
throughout our analysis, we treat these data as appended but disjoint sets, generating training
pair matches and statistical matches only within a given dataset rather than across the TDCJ
and JIMS records.

Individuals involved in the criminal justice system are a highly selected group in the general
population, which raises important questions about the general relevance of our empirical
models to other settings. Table 2 describes the demographic traits of these data sources as
compared to the general population in the United States. Not surprisingly, the Harris County
court and Texas prison data have a disproportionate number of men and people of color
compared to the population at large. As a result, the types of within-biometric ID variation in
PII may differ systematically with a broader population. For instance, women more regularly

17Recent work by Yoon and Jain (2015) and Galbally et al. (2019) raise some concerns about the permanence
of fingerprints as the subject ages and the duration of time between imprints grows. The lack of criminal
activity by the elderly should reduce the set of individuals that offend over long periods of time, making this
concern relatively minor in our setting. Large numbers of individuals with multiple assigned IDs would likely
indicate that our precision estimates are a lower bound, but we see limited evidence that this is the case.

18When conditioning on individuals who have more than one appearance in the court system, this ratio
increases to 1.47 combinations of PII within each SPN.

19When conditioning on individuals who have more than one appearance in the prison data, this ratio
increases from 1.15 to 1.17 combinations of PII within each SID.
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change their last names due to marriage. Because women are not well represented in the
criminal justice system, our prediction algorithm may not be optimized to recognize these
errors as much as we might hope for a general population application.

Given this discrepancy, in Section 5.3 we evaluate whether performance degrades when
applying our prediction algorithm to several settings beyond the scope of our training data.
This analysis sheds light on the general suitability of our model for non-criminal justice
applications.

4 Matching Algorithm

We define our match problem in terms of data deduplication: identifying which records in
a given dataset belong to the same individual. We start with set D containing N total
observations, each with unique combinations of full name and date of birth.20 The potential
match space ∆ of all records di ∈ D contains N×(N−1)

2 unique ordered pairings:

∆ = {(di, dj); i < j, di ∈ D, dj ∈ D}

We seek to identify the subset Ω containing pairings of observations that belong to the same
latent identity

Ω =
{

(di, dj); Ωdi
= Ωdj

, (di, dj) ∈∆
}

where there are µ ≤ N total entities in dataset D.

Assessing the match potential for every pair of observations is impractical due to the size
of most administrative data applications (including our own). In order to save computational
resources and focus our search on pairs with likely matches, we utilize a blocking method
to reduce the number of comparisons. Specifically, we propose a simple blocking strategy B,
comprised of B1 ∪ ... ∪ BL individual blocks. Each block Bl≤L creates a partition of ∆. An
example of a block partition could be the subset of records that exactly match on date of birth.
Another might be those that share the exact same first and last names. The more specific
a blocking criteria is the fewer comparisons that are made and the greater chance that an
underlying set of matched records is missed by the algorithm. The goal in building in multiple
(potentially overlapping) blocks is to restrict the comparison space for computational feasibility

20There are many observations with perfectly matching PII in the raw data, reflecting the high recidivism
rates in the criminal justice system. As is common in the matching literature, we eliminate duplicative
observations with the exact same combination of PII. This ensures that measures of the algorithm’s performance
are not driven by observations with identical PII that are likely to be matched regardless of the matching
strategy that is employed.
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while also providing flexibility to identify matches that may not satisfy the criteria for any
given block. Any pair of records that are not in the subset created by B are automatically
classified as a non-match.

In practice, we utilize the union of 10 blocks described in Table 3. For a given pair of
observations to be compared, it must appear in the same block group for at least 1 of the 10
block definitions. The first four blocks are created by limiting comparisons to those with the
same date of birth and either the phonex or soundex code (described in more detail below) for
the first or last name. The next six blocks rely on pairings that share the first and last name
soundex or phonex code with a single component of the date of birth also being common
(i.e. day of birth, month of birth, or year of birth). Given the reliance on the soundex and
phonex codes to generate candidate pairs, our algorithm will perform poorly in the event
of simultaneous typos in the first syllable of both the first and last names. Together, these
steps reduce the comparison space of ∆ from 2 trillion observation pairs to just 17,577,515
observation pairs, with 95.2% of actual matches included in the blocked subset of paired
observations.21

We also must introduce a comparison function γ(di, dj) to quantify record similarity and
create predictions regarding match status. For each pair of observations, we generate 46
variables that apply different comparators to various components of the PII. We include
dummy variables for whether there is an exact match for first name, last name, middle
name or the soundex or phonex code matches for any of the three name components. We
include a dummy variable for whether the standardized first or middle name is an exact
match. The standardized name is created using a U.S. Census Bureau crosswalk of nicknames.
For example, the standardized name for someone named Matt or Mike would be Matthew
and Michael respectively. This allows us to account for common nicknames when creating
matching weights. Vick and Huynh (2011) provide evidence that using standardized names
can improve the performance of matching algorithms.

In addition to binary match variables, we calculate a number of distance metrics to
measure the similarity of names and dates of birth. For each name component we include

21A review of the non-blocked true-match pairs indicate stark differences in PII that would likely be
impossible to resolve with any probabilistic matching technique. We believe two potential phenomenon might
contribute to this pattern. First, errors can be made with fingerprint entry creating a false biometric link
between two distinct individuals. Second, justice involved individuals may intentionally falsify their PII
through the use of an alias. Both of these issues in the data are likely non-trivial given that the source data
extends back to the 1980’s, before advances in information technology infrastructure reduced the risk of
these problems. As a consequence, the external (non-criminal justice) relevance of our model may be best
characterized when focusing on just the hold-out blocked sample, excluding the non-blocked observations,
which presents an even more optimistic view of the model’s performance.
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the Jaro-Winkler, Levenshtein Edit Distance normalized by the string length and raw edit
distance.22 At this stage, we also account for the possibility that names can be flipped by
calculating the distance between first-middle, first-last and middle-last names. When the
flipped name comparison reveals a closer string edit distance than the original comparison, we
update the string edit distance to reflect the flipped value. Lastly, we calculate a measure of
uniqueness for each first, middle and last name in our data.23 We then take an average of the
uniqueness measure within the comparison pair and interact it with the relevant Jaro-Winkler
comparison score and the number of raw edits to create two different measures. The idea
behind these variables is to give extra weight to rare names that match. For example, two
observations with the last name “Smith” (the most common last name in the 2010 Census)
are less likely to be the same person than two observations with the last name “Cooke”
(the 1,000th most common last name in the 2010 Census). This should give extra weight
to individuals with rare names that are similar. To measure date similarity, we include raw
string edit distances and absolute numerical distance between the month, day and year of
the dates of birth as well as the date of birth overall. See Table A.1 for a list of each variable
included in the model.

A variety of linear and non-linear prediction algorithms as well as rules of thumb could be
applied to the data at this point to determine which comparators receive more or less weight
in generating a prediction of true match probability. We are agnostic with regard to empirical
methods and explore a range of candidate algorithms in Section 5, ultimately settling on a
random forest classifier as our preferred specification.

The random forest algorithm, as proposed by Breiman (2001), allows for classification by
building many decision trees using random draws of the training data such that each decision
tree is constructed using a different bootstrapped sample.24 In addition, the variables used
to split the tree are randomly selected in each tree. The bootstrapped samples combined
with the randomly selected splitting variables allow for the construction of a large number
of prediction models with minimal correlation between them. Classification is based on the
mode prediction over the full sample of trees.25

A single decision tree effectively captures non-linearities and interactions among terms;
22These edit distances attempt to quantify the similarity of two text strings. The raw edit distance calculates

the number of edits one would have to make to make string A equivalent to string B. The Jaro Winkler and
Levenshtein Edit Distance are variations of the raw edit distance.

23The uniqueness variable is measured by calculating the reciprocal of the total number observations with
the same name. Person A who has a first name shared by 500 other people has a first name uniqueness score
of 1/500, while person B who has a unique first name has a uniqueness score of 1.

24The technique of utilizing multiple draws of a random sample is also known as bagging.
25See appendix B for more details about the random forest classification methodology.
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however, predictions based on individual trees often have high variance. Building many trees
based on bootstrapped samples allows us to build a non-linear model while also alleviating
concerns of overfitting (Hastie et al., 2016). Based on these properties, a random forest
classifier is particularly well-suited to our application of building a non-linear model for entity
resolution.

While random forest models are commonly used by computer scientists, they are utilized
relatively infrequently in applied economics research. In most cases, they are used as tools
to predict macroeconomic trends (Alessi and Detken, 2018, for example), though other
applications include predicting future criminal recidivism (Grogger et al., 2020) or the
determinants of preferences for income distribution (Keely and Tan, 2008). There is also a
recent theoretical literature showing the benefits of using random forests over more traditional
linear regression or matching models in the estimation of heterogeneous treatment effects
(Taddy et al., 2016; Wager and Athey, 2018).

To assess model performance, we take a 1,000,000 pair random sample from the blocked
pair set, which is slightly more than 5% of blocked pairs. The same million observations are
used to train each of the candidate prediction models, while the remaining 16,577,515 blocked
pairs are held back for out-of-sampling testing purpose. This is especially important in the
context of highly non-linear machine learning models, which can have a tendency to overfit
training data.

The sequence of steps in the data construction, model training, and out-of-sample testing
is presented in Figure 2.

5 Evaluating classification performance

5.1 Baseline results

Table 4 presents six performance metrics for evaluating the relative strength of ten different
prediction algorithms. These range from a basic deterministic model, which requires exact
matching on 5 out of 6 variables (first name, middle name, last name, day of birth, month
of birth, and year of birth), to more sophisticated machine learning algorithms like neural
networks and random forests. A description of each prediction algorithm is described in detail
in Appendix B.

We evaluate performance along six criteria, five of which focus on the quality of statistical
matches while the sixth measures computational intensity. Statistical match quality criteria
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are measured using various combinations of true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN) in the out-of-sample blocked pairs as well as
the universe of non-blocked pairs.26 Defining these outcomes for the trillions of candidate
matched pairs is accomplished through comparing predicted statistical match status against
the fingerprint-based measure of true match status. Through excluding the 1 million training
observations, we avoid conflating model performance with concerns about data overfitting.
We also impose linkage transitivity in our algorithm to ensure that if record A matches to
record B, and record B matches to record C, then we count records A and C as matches
regardless of whether the model determines them to be a match. This will affect measures of
the model’s performance by increasing the number of true and false positives.

Accuracy ( TP+TN
TP+FP+TN+FN ) and the False Positive Rate ( FP

FP+TN ) although widely reported
in the record linkage literature are relatively meaningless in this context due to the large
number of true negatives. We utilize slightly modified definitions that replace TN with
10× (TP +FN) implying that we cap the number of true negatives at a ratio of 10:1 relative
to the number of true matches in the data. Because of the need for this modification, we
focus instead primarily on Precision ( TP

TP+FP ), which captures the true match rate among
statistical matches, and Recall ( TP

TP+FN ), which captures the statistical match rate among
true matches.

No single algorithm dominates all performance criteria. Most algorithms deliver precision
rates in the 0.92 to 0.94 range, suggesting most classifiers generate reliable statistical matches.
A much wider performance range is observed for recall (0.72 to 0.88) meaning that “better”
and “worse” algorithms distinguish themselves by being able to better identify marginal
matches where the similarity of PII between two records may not be clearly obvious.

Non-linear machine learning algorithms (random forests, neural networks) outperform
other classifiers with regard to recall. The flexibility provided in these models in accounting
for non-linearities drives this result. Our preferred specification enhances the standard random
forest model with 8 additional comparison variables accounting for the shared demographic
traits (sex, race/ethnicity) between the pairs, which adds another dimension of comparison
but also adds flexibility in the treatment of existing comparison variables (e.g. pairs of female
records may rely less on last name matching in establishing a statistical match given the
higher natural rate of last name changes in the female population). We call this model,
which is our preferred specification, the demographic-enhanced random forest (DE-RF) model.
Alternatively, the random forest (Year of Birth) model is the same as the baseline random

26All non-blocked pairs are defaulted to be a statistical non-match meaning they can only be classified as
TN or FN. This saves substantial computing resources.
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forest except we drop all comparators that are based on the day or month of birth. In many
historical linkage contexts, matching is based on name and age, so we view this model as a
rough comparison to the methods used in the historical linkage literature. Not surprisingly,
the algorithm performs worse when date and month of birth are not included.

Figure 3 shows a variety of diagnostic graphs from the training data for the DE-RF model.
Figure 3a plots a histogram of the predicted match probabilities as well as the underlying true
match rate across the distribution. High performing binary classification models differentiate
likely matches from non-matches (visible from the clear bimodal distribution in this probability
density in this figure) as well as efficiently sort ambiguous pairings into those more and less
likely to be true matches (visible from the monotonic increase in true match rate throughout
the distribution as well as the fairly sharp increase in true match rate starting around roughly
0.4).

The receiver operating characteristic (ROC) curve plots the true positive rate (also known
as recall) against the false positive rate for varying thresholds in the predicted index for
establishing a statistical match (see Figure 3b). Improving the true positive rate comes at the
expense of the false positive rate and vice versa, which is also reflected in the tradeoff between
recall and precision shown in Figure 3c. At very high thresholds, the few statistical matches
made are almost always true matches, which raises precision; however, such high thresholds
means many true matches are missed lowering recall. The only method of simultaneously
improving both recall and precision is through model improvements that better predict
matches and non-matches in the first place.

The F-Score balances these tradeoffs through combining the concepts of recall and precision
into a single measure that takes the harmonic mean of both components:

F-Score = 2× Precision×Recall
Precision+Recall

We utilize the F-Score for two purposes. First, in the training data, we establish our statistical
match threshold using the predicted probability that maximizes the in-sample F-Score (0.42
in the case of our demographic-enhanced random forest model as seen in Figure 3d). Second,
we identify the preferred algorithm in Table 4 based on the routine that delivers the best
out-of-sample F-Score.

It happens that our preferred specification also performs relatively well on our second
performance criteria: the duration of combined estimation and prediction routines. 27 In our

27All models are estimated on the Criminal Justice Administrative Record System’s (CJARS) server which
has 256 GB of RAM and 12 virtual processors.
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application, the demographic-enhanced random forest model processing time took 0.28 hours
to complete. While this is longer than the deterministic model, which entailed no model
estimation or prediction, it is significantly lower than many of the other candidate algorithms,
sometimes by a matter of days.

Figure 4 examines the relative contribution of the individual PII components on statistical
match probability in the DE-RF model. We consider first name, middle name, last name,
and the complete date of birth. To assess the impact of each variable, we residualize the
predicted match probability by the non-focal string edit distances and plot resulting residual
against the string edit distance for the focal variable using a local polynomial plot. This
approach abstracts from the variety of comparators used in the model to assess similarity for
the same pair of variables as well as the inherent non-linear nature of the model given the
random forest specification, but should generally capture the first order contribution of each
component of PII.

Perfect or close to perfect alignment on date of birth has the strongest overall contribution
to statistical match probability. Once two or more edits are necessary to align a given pair of
dates of birth, there is no relative contribution to match probability. There are a variety of
reasons that contribute to this pattern. First, exact dates of birth are highly unique within
the population. Second, there is no naturally occurring reason why a date of birth should
change over time (as opposed to a name change or nickname), making it a more reliable
predictor of match status. Finally, although speculative, numeric information may be less
prone to data entry error again making this a better predictor.

On the name components, similarity on last name followed by first name followed by middle
name have strongest predictive power for match status. Last names are more unique in the
United States compared to first names, which have a tendency to cluster around commonly
occurring names. Both last and first names though exhibit a degree linearity with more edits
further decreasing the likelihood of a statistical match. Middle name, however, has minimal
to no contribution to match status after 3 or more edits are necessary to align the pair of
variables, likely reflecting the fact that middles names are irregularly collected, often receiving
less oversight than other components of PII.

5.2 Decomposing model performance and assessing demographic heterogeneity

We compare the DE-RF model’s performance to three alternatives in Table 5, which include
standard practices in the economics literature: (1) a deterministic model, (2) a random forest
model trained on 5,000 hand-coded paired observations, and (3) a random forest model trained
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on the same 5,000 paired observation sample but using the biometrical identifier.28 The point
in making these comparisons is to respectively highlight factors that together contribute to
the overall success of the DE-RF model: (1) model flexibility, (2) elimination of potential
human bias in the training sample, and (3) depth of training data. We also examine how
performance changes overall as well as across various demographic groups (race/ethnicity,
sex, and birth decade).

The deterministic and hand-coded models share similar features. Both strategies yield
results with high precision rates and low recall rates, meaning the quality of statistical matches
is quite high but many potential matches are missed. In practice, this suggests that both
exact matching as well as probabilistic strategies built off of human-driven clerical review
may be overly conservative.29

The random forest model trained on just 5,000 candidate pairs (the “slim biometric model”)
represents a sizable shift towards recall at a slight cost to precision. The fingerprint-based
measure of true match status pushes the model to identify more marginal candidate pairs as
statistical matches, increasing recall. Overall, the deterministic, hand-coded, and the slim
biometric model deliver F-Scores that are roughly similar, falling into the 0.8 to 0.9 range
across the various demographic subgroups.

The DE-RF model performs quite well relative to these three comparison models. There is a
12 to 13 percentage point improvement on recall relative to the deterministic and hand-coded
strategies. When compared to the “slim biometric model,” the DE-RF model achieves an
even greater improvement in recall at a similarly small cost of 1 to 2 percentage points of
precision. The improvement on recall without substantial penalty to precision indicates the
DE-RF is better able to predict match status and sort candidate pairs accordingly.

Figure 5 further investigates performance gains as training sample size is increased. This
figure shows the convergence of out-of-sample model performance as the size of the training
sample is increased incrementally from 5,000 training observations up to 1 million training
observations.30 Models trained on fewer than 250,000 observations show a surprising degree

28See Appendix A for details on our hand-coding procedure.
29A review of the discrepancy between the hand-coded and biometric match statuses indicate that the

reviewers systematically favored name similarity over date of birth similarity, which consequently lead to both
false positive and false negatives. This lines up with the results from Figure 4 that date of birth information
is more uniquely identifying that other components of PII.

30For this specific exercise, 16.6 million observations of the total 17.6 million blocked matched pairs were
selected at random to be eligible for use in the training sample; the remaining 1 million observations were held
back as out-of-sample testing data. 100 independent models were estimated for each given level of training
data, with training observations selected at random (with replacement) from the 16.6 million pool of eligible
pairs in order to gauge the speed of model convergence.
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of inconsistency, especially regarding precision when using 50,000 training observations or
fewer. One challenge these models face is insufficient coverage of marginal match and non-
match training pairs in order to identify the optimal statistical match threshold. Even so,
performance gains accrue at each larger sample size, pushing the production frontier higher in
terms of both recall and precision, demonstrating the benefit of combining highly non-linear
machine learning models with large sample sizes.

A natural follow-up question is whether out-of-sample performance can be improved
by adjusting the composition rather than the size of the training sample. For example,
including more marginal matches in the training data may strengthen the model’s ability to
correctly differentiate hard-to-classify, ambiguous matches as well as identify an appropriate
match threshold. Figure 6 explores this concept in a bootstrapping exercise that varies the
composition of the training records. First, we use OLS to predict the likelihood of being
a true match using the full sample, and split the training data into three predicted match
likelihood groups: low (1% TM), marginal (51% TM), and high (89% TM).31 Then, we
sample records according to various targeted sample compositions to generate 5,000 training
pairs per iteration. This repeated 100 times per composition scenario, with the resulting
out-of-sample precision and recall estimates plotted in panels a and b. Changing composition
can substantially improve precision with only slight penalties to recall (see Panel a).32 Taking
this logic to an extreme, though, can degrade model performance: populating the training
data exclusively with “marginal” pairs worsens recall and precision relative to our baseline
scenario (see Panel b).

Returning to Table 5, the DE-RF model is the clear choice in the sample overall and for all
demographic subgroups. Interestingly, the largest improvements are observed for demographic
groups with the lowest baseline statistics (e.g. female, Hispanic, 1960’s births) from the
deterministic model. As a result, match rate statistics across various demographic subgroups
exhibit lower variance than traditional strategies yield. We will return to this theme in
Section 6 where we discuss the implications of match quality for causal inference.

5.3 Assessing performance degradation in external applications

One contribution of this paper is practical in nature. We have designed and estimated a model
that could be applied to other settings where quality training data may not be available. For

31Note that this exercise is academic in nature as it presupposes the existence of true match variable to
generate the “low”, “marginal”, and “high” predicted match likelihood variables.

32To help better quantify the gain from a tailored sample, average recall and precision rates in panel a which
are built on 5,000 training observations approach the sample size results for 25,000 training observations see
in Figure 5 although with greater variability.
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example, the model could be used to match education records (Zimmerman, 2019), credit
bureau records (Miller et al., 2020), home financing records (Cloyne et al., 2019) or health
records (Duggan et al., 2018). To the extent that a given target application resembles the
Texas criminal justice system, the algorithm should perform well. Whether the model works
in dissimilar populations remains an open question.

We develop three exercises that tests the limits of the model. In the first, we take the
universe of prisoners incarcerated on July 1, 2017 from 9 states33 (excluding Texas where the
training data comes from), run the deduplication, and measure the number of false positives
created by the model. Because we know each record is from a distinct individual on that day,
matching the data to itself can only produce false positives. The goal of the exercise is to
assess the performance in non-Texas criminal justice settings.

The second exercise attempts a one-to-one match among voter registration records in
the state of Washington from 2008 to 2012. This is a special case of deduplication, and is
particularly relevant for social scientists linking individuals across multiple survey waves.
Voter registration IDs create a measure of true match status while the PII retains its original
non-synchronized values, meaning there is variation of PII within voter IDs. A voter’s PII
may change if they move or change their name and must register again.34 The goal of this
application is to assess model performance in a non-criminal justice record linkage setting.

The final exercise selects all deaths in the United States from 2000 to 2009 as captured in
the Social Security Administration’s Master Death File. We apply a corruption algorithm
that introduces phonetic, typographic, and nickname errors into the data and try to reconcile
the corrupted files with their original source observations using the matching algorithm.35

Our focus in this exercise is testing model degradation under increasingly large sample sizes.
With a fixed set of names and dates of birth, large populations present a particular challenge
as there is increasing risk that any given entity has an exact or close match in PII with
another entity. As the PII space becomes more crowded, it becomes increasingly difficult to
differentiate true matches from true non-matches.

Table 6 shows the results of these three exercises. Out of 330,756 inmates incarcerated
on July 1, 2017 in non-Texan prisons that we can track, we create 463,969 blocked pairs
which generate to 2001 predicted statistical matches, or a 0.00% false positive rate (0.4% if

33The nine states are Arkansas, Connecticut, Florida, Illinois, Michigan, Mississippi, North Carolina,
Nebraska and Ohio.

34The Washington Secretary of State elections webpage indicates that approximately 10-15% of the
population moves each year while another 40,000 people change their name each year.

35See Appendix C for a more detailed description of the corruption algorithm.
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conditioning on being the the blocked pair sample).36 Fewer than 1 percent of the statistically
generated identifiers are in two places at the same time.

The Washington voter registration experiment pushes our algorithm further along a
number of dimensions. The population is more demographically representative of the general
population and larger overall than the criminal justice records in our main results (7,551,570
registration records from 2008 and 2012 combined). This latter issue can be quite challenging
as with a larger population, there can be higher density in the space of PII, making it more
difficult to differentiate marginal true positives from marginal false positives. In spite of
these challenges, we observe precision at 0.92, recall at 0.88, and a combined F-Score at 0.90.
A degree of performance loss is to be expected as there are more women in this general
population dataset, who are harder to link based on higher rates of naturally occurring legal
name changes compared to men.

The final exercise scales up the issue of PII density to the national scale using records from
the national Master Death File. Based on 20,298,659 unique deaths between 2000 and 2009,
we generate roughly 4 million corrupted records, bringing the total sample for the exercise up
to 24,300,530 records. If the algorithm is working properly, the statistical matches will be
able to link the corrupted records back to their unique source information without also being
linked to other, unrelated individuals. The table reports promising performance statistics:
0.97 precision, 0.93 recall, and a combined 0.95 F-Score. This suggests that scaling up the
potential applications well beyond the original training data is feasible, in spite of the lack of
uniqueness in names and dates of birth in the general population.

6 Data Simulation

In this final section, we conduct two groups of simulation exercises to examine how recall
and precision errors can impact estimated treatment effects, and how these biases relate
directly to the concepts of external and internal validity in causal inference. The first scenario
considers a research setting where a matched record is an indication that an outcome has
occurred (e.g., recidivism, employment, or public program take-up) for an individual.37 In the
second setting, the analysis sample itself is conditioned on being matched because a given
outcome is only observed in the linked data. Examples include studying the impact of an
intervention on wage effects among those who file taxes, health care utilization among those

36The effective false positive rate in the data overall is 0.00%, but this is a relatively meaningless statistic.
37Tahamont et al. (2019) provides an example of how conservative deterministic matching techniques can

bias estimated treatment effects in a randomized control trial.
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with Medicaid coverage, or consumer behavior among those holding a specific brand of credit
card.

For the first scenario, we use the following data generating process:

yi = 1

(
βdi + εi > F−1(µ)

)
where, outcome yi is a function of individual i’s treatment status (di) and a random shock
term (εi ∼ N(0, 1)). The outcome is normalized by taking the inverse standard normal CDF
of the parameter µ, which sets the average rate of the outcome (i.e. the match rate) in the
non-treated control group.

The econometrician is interested in estimating the following linear probability model:

yi = ∆di + νi

but, only observes ỹi which is contaminated by both problems of recall and precision. To
operationalize these ideas, we introduce two match quality shock terms: ρi, πi ∈ U(0, 1).

ỹi =


0 if yi = 1 & ρi ≥ ρ̄

1 if yi = 0 & πi ≥ π̄

yi otherwise

where matched outcome yi = 1 is replaced with 0 creating a false negative if the recall shock
(ρi) exceeds the recall threshold of ρ̄. Similarly, the match outcome yi = 0 is replaced with 1
creating a false positive if the precision shock (πi) exceeds the precision threshold of π̄. This
setup allows us to examine the potential interactions of better and worse match quality on
these two important dimensions simultaneously.

We conduct 1,000 empirical simulations of this model, where di is assigned at random (i.e.
di⊥εi, νi) to 50 percent of 5,000 observations. For each individual simulation, we estimate a
number of distinct parameterizations, cycling over a control outcome mean (µ) of 0.25, 0.50,
and 0.75, a β of 0.05, 0.10, and 0.25, a recall threshold (ρ̄) ranging from 0.50 to 1.00, and a
precision threshold (π̄) ranging from 0.50 to 1.00.

Figures 7 and 8 report the average estimated ∆̂ and corresponding p-value testing the
null hypothesis that ∆ = 0 over the 1,000 independent simulations. Worse precision and
recall rates bias estimates of ∆̂ towards zero systematically,38 and impair statistical precision

38An unbiased measure of ∆̂ is included in the top right hand corner of each plot where precision and recall
rates are both 100% and there is effectively no data corruption in place.
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increasing the likelihood that there is a failure to reject the null hypothesis. With larger
control means and low precision rates, there is increased likelihood of actually flipping the
sign of ∆̂ and rejecting the null hypothesis. Note the saddle-like shape in the bottom row of
Figure 8, where depending on precision and recall parameters, the same model will lead to
rejecting the null in favor of both positively and negatively signed ∆̂’s.

For the second scenario, we use the following data generating process, which introduces
a covariate (xi ∼ N(0, 1)) into the model resulting in heterogenous treatment effects of the
intervention:

yi = µ+ β(di − di × xi) + γxi + εi

Again, the econometrician is interested in estimating the linear model (yi = ∆di + νi),
but only observes ỹi which is contaminated by both problems of recall and precision. In this
setting, we operationalize the match quality problems in the following way:

ỹi =


missing if ρi ≥ ρ̄

yi if πi ≥ π̄

yi otherwise

Because the outcome now is dependent on the match in the first place, low recall rates will
result in a larger share of the outcome data being missing and reducing the sample size
consequently. The term yi represents a completely different draw of the yi outcome from
the population distribution (both in terms of di, xi, and εi) in order to align with thought
experiment that a record has matched to the outcome database, but simply randomly matched
to the wrong row.

We also allow the correlation of xi with ρi and πi to be positive, creating a scenario where
those least likely to benefit from a given intervention are most likely to face issues in match
quality. As we saw in Section 5.2, match quality does vary by key demographic traits that in
many settings drive heterogeneous response to interventions, making this setup uncontrived.

Like the first scenario, we conduct 1,000 empirical simulations of this model, where di is
assigned at random (i.e. di⊥εi, νi) to 50 percent of 5,000 observations. For each individual
simulation, we estimate a number of distinct parameterizations, cycling over a control outcome
mean (µ) of 0.25, 0.50, and 0.75,39 a β of 0.05, 0.10, and 0.25, a recall threshold (ρ̄) ranging
from 0.50 to 1.00, and a precision threshold (π̄) ranging from 0.50 to 1.00.

Figures 9 and 10 report the average estimated ∆̂ and corresponding p-value testing the
39Because the change in µ is essentially just a level shift in the regression intercept, we should not expect

this to create meaningfully different patterns across the simulations.

23



Gross and Mueller-Smith (2021) Draft date: May 12, 2021

null hypothesis that ∆ = 0 over the 1,000 independent simulations. Due to the heterogeneous
treatment effects and the correlation of demographic traits with match quality, lower recall
rates exclude those least likely to benefit from the intervention resulting in estimates that
exaggerate the average treatment effect of di. As the estimate of ∆̂ is pushed higher, it is
more likely to reject the null hypothesis, which could facilitate a more opaque form of data
mining in social science. The exclusion of these records though from the empirical analysis
exactly invokes the challenge of external validity, creating an internally valid estimate that
just does not apply to the population overall.

Worse precision operates similarly to the first experiment, where lower precision rates bias
the estimated ∆̂ closer to zero and reduce statistical precision.

Across both sets of thought experiments, a wide range of match quality parameterizations
are considered. In practice, it may be unrealistic to think that moving from a 50% recall rate
and precision rate to the full elimination of match quality errors is a feasible improvement.
In our setting (Table 5), we observe several groups that experience recall improvements on
the order of 20 percentage points going from deterministic matching (which is still common
in the literature) to our proposed DE-RF model without meaningful sacrifice to precision. As
seen in the figures, this can have meaningful implications for both bias in the estimation of
treat effects as well as precision in evaluating null hypotheses.

7 Conclusion

This paper addresses the increasingly common challenge of integrating individual-level records
from disparate administrative datasets for the purposes of cutting edge social science research.
We leverage a novel source of variation, millions of fingerprint-based biometric identifiers, to
train a flexible machine learning-based entity resolution model that outperforms a variety of
standard practices in the literature. Evidence suggests continuing returns to utilizing a large
training sample well beyond current recommendations in the literature.

We show how the model’s performance extrapolates to non-criminal justice contexts,
including settings with significantly more records which could in principle reduce performance
due to crowding in the PII space, and to both record linkage and deduplication applications.
While there are many theoretical reasons why we should observe performance degradation,
the model manages to yield match rates at or exceeding our baseline results, suggesting
broader potential returns to the model through a range of fields of economic research that
rely on linked administrative records.
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Model simulations connect the statistical matching performance criteria of precision and
recall to the concepts of external and internal validity in causal inference. This is especially
important given the documented inconsistent performance of standard matching techniques
across demographic groups, where individuals with limited naturally occurring name variation
or name confusion (e.g. white men) are easiest to match. Without affording a more flexible
matching strategy, results may be biased towards these demographic groups depending on
the exact model specification.

Future work is needed to further test the limits of the model’s effectiveness, including its
ability to successfully differentiate non-deceased individuals in the full national population
in the United States, for which there is no public roster currently available. That said, this
research represents an important first step in bringing discipline to an increasingly common
aspect of empirical social science research in the U.S.
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Figures

Figure 1: Total publication mentioning “administrative data” in the top 5 economic journals,
1995-2019.
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Note: The figure was compiled by searching the top 5 economic journals for papers that contain the exact phrase “admin-
istrative data.” We used search functions provided by Oxford Journals, JSTOR, Wiley Online Library and University of
Chicago Press to cover the relevant journals and years.
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Figure 2: Model Training and Testing Overview
Notes: TM - True Match; NM - True Non-Match. Performance statistics based on the demographic enhanced random forest

model described in Section 4. Starting with the original court and inmate data, this flow chart shows how the model is
trained and tested to generate out of sample predictions. The blocking strategy cuts down the potential match space from
2 trillion to 17.6 million matches at the cost of removing approximately 5% of the total true matches. Once the blocking
has identified candidate matches, the pairs are split into a training sample and a testing sample. The demographic en-
hanced random forest algorithm is used to train a predictive model. The recall and precision of the training set is shown
on the bottom left box. The results from the testing blocked pairs is shown in the middle gray box, while the full out-of-
sample results (including pairs that are not matched together) are shown in the box on the bottom right.
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Figure 3: Diagnostic performance for varying statistical match thresholds
Panel a shows that the probability of correctly classifying a match increases with the underlying true match rate, though

the increase levels off around a true match rate of 0.6. Panels b and c show the ROC curve and precision vs. recall curves,
respectively. These plots illustrate the tradeoffs between conservative and aggressive matching thresholds. Panel d illus-
trates the maximization process used to select the optimal match threshold. The red line indicates the statistical match
threshold that maximizes the F-Score in the training sample.
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Figure 4: First order impact on predicted match probability
Panel a shows the first derivative first name raw edits on the predicted match probability, indicating that there is a non-

linear and decreasing relationship between the first name edit distance and predicted match probability. Blocked pairs
with the same first name are a predicted match between 3 and 4% of the time. Panel b shows the same first derivative but
for the number of middle name edits, indicating that the relationship is cubic. Panel c shows that the predicted match
status decreases with the number of last name edits, and panel d shows that predicted match status decreases with date
of birth (string) edits.
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Figure 5: Convergence of model performance as training sample increases
This figure shows the convergence of out-of-sample model performance as the size of the training sample is increased from

5,000 training observations up to 1 million training observations. 16.6 million observations of the total 17.6 million blocked
matched pairs were selected at random to be eligible for use in the training sample; the remaining 1 million observations
were held back as out-of-sample testing data for this exercise. 100 independent models were estimated for each given level
of training data, with training observations selected at random (with replacement) from the 16.6 million pool of eligible
pairs. Panels a, b, and c show the change in average as well as 5th/95th percentile model performance as the sample size
grows. Panel d shows the full set of precision and recall results per bootstrapped sample for a subset of training sample
levels evaluated.
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Symbol
Low Predicted Match 

Likelihood
Marginal Predicted 
Match Likelihood

High Predicted Match 
Likelihood

Average 
Precision

Std. Dev. 
Precision

Average 
Recall

Std. Dev. 
Recall

Baseline (5,000 obs.) 96% 1% 3% 0.75 0.10 0.94 0.02

Panel A: Excluding low, high, and marginal matches in training sample
  Scenario A1 0% 50% 50% 0.73 0.20 0.93 0.04
  Scenario A2 50% 50% 0% 0.90 0.06 0.90 0.03
  Scenario A3 50% 0% 50% 0.88 0.06 0.91 0.06

Panel B: Adjusting marginal share in training sample
  Scenario B1 50% 0% 50% 0.88 0.06 0.91 0.06
  Scenario B2 33% 33% 33% 0.90 0.08 0.90 0.03
  Scenario B3 25% 50% 25% 0.89 0.09 0.90 0.03
  Scenario B4 0% 100% 0% 0.69 0.24 0.83 0.09

Full Blocked Pair Comparison Sample Statistics
  Percent True Matches 1% 51% 89%
  Total True Matches 93,943 103,557 429,048
  Total Blocked Pairs 16,889,570 204,344 483,601

(a) Excluding low, high, and marginal matches in training sample (b) Adjusting marginal share in training sample
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Figure 6: Model performance under varying training sample composition, conditional on training sample size
This figure shows the variation in out-of-sample model performance given varying composition of a fixed 5,000 observation training sample. 16.6 million observations of the

total 17.6 million blocked matched pairs were selected at random to be eligible for use in the training sample; the remaining 1 million observations were held back as
out-of-sample testing data for this exercise. OLS was used to predict true match status using all available comparators in the data; blocked match pairs were designated
then as either “low”, “high”, or “marginal” matches based on the predicted linear probabilities of being a true match. 100 independent models were estimated for each
targeted composition, with training observations selected at random from the 16.6 million pool of eligible pairs.
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(f) Control Mean = 0.50; β = 0.25
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(g) Control Mean = 0.75; β = 0.05
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(h) Control Mean = 0.75; β = 0.10
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(i) Control Mean = 0.75; β = 0.25

Figure 7: Average estimated ∆̂ over 1,000 simulation runs with varying model parameterizations (Scenario 1)
This figure reports the average estimated ∆ over 1,000 independent simulations described in 6. The figure shows that worse precision and recall rates bias estimates of ∆̂

towards zero systematically.
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(b) Control Mean = 0.25; β = 0.10
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(c) Control Mean = 0.25; β = 0.25
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(d) Control Mean = 0.50; β = 0.05
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(e) Control Mean = 0.50; β = 0.10
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(f) Control Mean = 0.50; β = 0.25
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(g) Control Mean = 0.75; β = 0.05
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(h) Control Mean = 0.75; β = 0.10
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(i) Control Mean = 0.75; β = 0.25

Figure 8: Average estimated p-value over 1,000 simulation runs with varying model parameterizations (Scenario 1)
This figure reports the p-value testing the null hypothesis that ∆ = 0 over the 1,000 independent simulations described in 6. Worse precision and recall rates impair statistical

precision, increasing the likelihood that there is a failure to reject the null hypothesis.

37



G
ross

and
M
ueller-Sm

ith
(2021)

D
raftdate:

M
ay

12,2021

.5
.6

.7
.8

.9
1

Pr
ec

is
io

n

.5 .6 .7 .8 .9 1
Recall

.04

.05

.06

.07

.08

Es
tim

at
ed

 ∆

(a) Control Mean = 0.25; β = 0.05
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(b) Control Mean = 0.25; β = 0.10
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(c) Control Mean = 0.25; β = 0.25
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(d) Control Mean = 0.50; β = 0.05
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(e) Control Mean = 0.50; β = 0.10
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(f) Control Mean = 0.50; β = 0.25

.5
.6

.7
.8

.9
1

Pr
ec

is
io

n

.5 .6 .7 .8 .9 1
Recall

.04

.05

.06

.07

.08

Es
tim

at
ed

 ∆

(g) Control Mean = 0.75; β = 0.05
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(h) Control Mean = 0.75; β = 0.10
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(i) Control Mean = 0.75; β = 0.25

Figure 9: Average estimated ∆̂ over 1,000 simulation runs with varying model parameterizations (Scenario 2)
This figure reports the average estimated ∆ over 1,000 independent simulations described in 6 for the scenario with heterogeneous treatment effects. Due to the heterogeneity

of the treatment effect, decreases in recall lead to systematic overestimates of ∆̂. Similar to scenario 1, decreases in precision bias ∆̂ towards zero systematically.
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(b) Control Mean = 0.25; β = 0.10
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(c) Control Mean = 0.25; β = 0.25
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(d) Control Mean = 0.50; β = 0.05
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(e) Control Mean = 0.50; β = 0.10
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(f) Control Mean = 0.50; β = 0.25
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(g) Control Mean = 0.75; β = 0.05
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(h) Control Mean = 0.75; β = 0.10
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(i) Control Mean = 0.75; β = 0.25

Figure 10: Average estimated p-value over 1,000 simulation runs with varying model parameterizations (Scenario 2)
This figure reports the p-value testing the null hypothesis that ∆ = 0 over the 1,000 independent simulations described in 6 for the scenario with heterogeneous treatment

effects. Worse precision and recall rates impact statistical precision though the effects are not systematic.
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Tables

Table 1: Matching Strategies Used in 2019 Administrative Data Papers From the “Top 5”
Journals

No Matching
Required

Matching Required
Not Discussed

Deterministic
Matching

Fuzzy
Matching

Total
Papers

Papers 23 19 10 2 54

The table was compiled by searching the top 5 economic journals for papers that contain the exact phrase “administrative
data.” We used search functions provided by Oxford Journals, JSTOR, Wiley Online Library and University of Chicago
Press to cover the relevant journals and years. Papers published in 2019 in the “top 5” economics journals are classified ac-
cording to the matching procedure used to link the data. Approximately 40% of the papers do not require matches, while
35% of papers do not explicitly discuss the matching method used to create data. Most deterministic strategies use unique
identifiers to execute merges.

Table 2: Summary Statistics of Training Data, External Testing Data, and the General U.S.
Population

TDCJ
Inmates
1978-2014

Harris County
JIMS

1980-2017

WA
Voters

2008 and 2012

Multi-State
Prison Snapshot,

July 1, 2017

DMF
Death Year,

2000

United States
Population,

2010

Share Male 0.88 0.80 0.50 0.93 0.48 0.49
Share White 0.36 0.27 0.72 0.44 0.82 0.64
Share Black 0.37 0.33 0.35 0.51 0.08 0.12
Share Hispanic 0.26 0.32 0.11 0.04 0.06 0.16
Average Age 42.5 40.9 37.8 44.2 78.3 37.2
Share in Texas 100.0 100.0 0 0 0.05 0.08

Observations 3,152,630 4,119,621 11,808,233 330,756 8,922,820 308,745,538
Unique IDs 905,530 1,317,315 5,379,888 N/A 2,230,705
Unique PII Combinations 1,095,054 1,723,008 6,164,621 329,088 4,202,455 N/A

Summary statistics of demographics for all relevant samples. USA data is measured using the 2010 Decennial Census. Wash-
ington data is measured using the 2008 and 2012 ACS 1 year sample. The average age is as of April 1, 2010, except in the
WA ACS sample where it is the average across the 2008 and 2012 waves. The samples used to train the matching model
have a higher proportion of men and people of color than the comparison populations.
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Table 3: Description of Individual Blocks

Block
Fraction of

True Matches
True Matches
Not Included

Date of birth + last soundex 77.9 147,654
Date of birth + first soundex 81.5 123,808
Month of birth + first soundex + last soundex 72.7 182,324
Day of birth + First soundex + last soundex 72.1 186,694
Year of birth + first soundex + last soundex 72.1 186,798
Date of birth + last phonex 77.9 147,761
Date of birth + first phonex 82.1 119,861
Month of birth + first phonex + last phonex 73.2 179,241
Day of birth + First phonex + last phonex 72.5 183,624
Year of birth + first phonex + last phonex 72.5 183,720

Union of Blocks 95.2 32,211

Each row represents a separate block that is used to partition the data. The full match space is generated by taking the
union of pairs created across all 10 blocks.

Table 4: Comparison of Out-of-Sample Model Performance

Model Accuracy Precision Recall F-Statistic

False
Positive
Rate

Estimation +
Prediction
Duration
(Hours)

Deterministic 0.97 0.93 0.76 0.84 0.006 0.00
Naive Bayes Classifier (Discrete) 0.97 0.90 0.72 0.80 0.008 0.06
Naive Bayes Classifier (Kernel) 0.97 0.88 0.81 0.84 0.011 1.42
Support Vector Machine 0.98 0.94 0.83 0.88 0.006 199.55
Lasso Shrinkage Model 0.98 0.90 0.82 0.86 0.009 21.01
Random Forest 0.98 0.93 0.88 0.90 0.006 0.26
Random Forest (Demog. Enhanced) 0.98 0.93 0.89 0.91 0.007 0.28
Random Forest (Year of Birth) 0.97 0.82 0.82 0.82 0.018 0.18
Neural Net Perceptron 0.98 0.93 0.85 0.89 0.006 2.11
Neural Net 0.98 0.92 0.88 0.90 0.008 10.13

This table compares performance across a number of classifiers. Because there are roughly 2 trillion true negatives, which
swamp comparison of accuracy and false positive rates across models, we limit the ratio of false negatives to true matches
at a ratio of 10:1. Otherwise, the accuracy rate for all models would be 1.00 and the false positive rate would be 0.00. In
either case, we focus on the precision, recall and F-Score to differentiate model performance. Numbers in bold indicate
the best performance across all models for a given statistic. Numbers in italics represent the worst performance across all
models for a given statistic. The demographic enhanced random forest achieves the highest F-Score and recall rate, and
has a precision rate that is slightly lower than the SVM classifier.
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Table 5: Demographic-Specific Performance Statistics
Demographic Enhanced Random Forest

Deterministic
5,000 Hand-Coded

Training Obs.
5,000 Biometric
Training Obs.

1,000,000 Biometric
Training Obs.

Panel A: Precision Rates
Overall 0.93 0.95 0.91 0.93
Race/Ethnicity
White 0.96 0.97 0.94 0.94
Black 0.97 0.97 0.96 0.95
Hispanic 0.88 0.98 0.95 0.93

Sex
Male 0.92 0.96 0.95 0.94
Female 0.97 0.95 0.83 0.90

Decade of Birth
1960s 0.93 0.94 0.89 0.92
1970s 0.94 0.96 0.93 0.93
1980s 0.97 0.97 0.93 0.94
1990s 0.98 0.98 0.95 0.96

Panel B: Recall Rates
Overall 0.76 0.77 0.84 0.89
Race/Ethnicity
White 0.81 0.81 0.89 0.93
Black 0.80 0.81 0.86 0.91
Hispanic 0.73 0.74 0.88 0.93

Sex
Male 0.79 0.77 0.83 0.90
Female 0.68 0.76 0.86 0.88

Decade of Birth
1960s 0.72 0.72 0.80 0.86
1970s 0.80 0.82 0.88 0.92
1980s 0.86 0.88 0.93 0.96
1990s 0.88 0.90 0.95 0.98

Panel C: F-Statistics
Overall 0.84 0.85 0.87 0.91
Race/Ethnicity
White 0.88 0.88 0.91 0.94
Black 0.88 0.89 0.90 0.93
Hispanic 0.84 0.84 0.92 0.93

Sex
Male 0.85 0.87 0.89 0.92
Female 0.80 0.84 0.84 0.89

Decade of Birth
1960s 0.81 0.81 0.84 0.89
1970s 0.86 0.88 0.90 0.93
1980s 0.91 0.92 0.93 0.95
1990s 0.93 0.94 0.95 0.97

This table compares performance across a number of classifiers and training data. Entries in bold represent the best perfor-
mance compared to other models, while entries in italics represent the worst performance across models. The demographic
enhanced model performs the best in terms of recall and the overall F-Score for every demographic group. The model
trained with hand-coded training data is more conservative in identifying matches since high precision comes at the ex-
pense of low recall. Similarly, the deterministic model is successful at limiting false matches (precision), though is unable
to identify true matches as well as the random forest algorithms.
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Table 6: Testing Model Performance in External Applications
False Pos.

Application Accuracy Precision Recall F-Stat. Rate

Multi-State Inmate Snapshot (July 1, 2017) 1.00 – – – 0.000
Washington State Voter Records (2008 & 2012) 0.98 0.92 0.88 0.90 0.008
Corrupted Death Master File (2000-2009) 0.98 0.97 0.93 0.95 0.003

Comparison of model performance across a range of external applications. Row 1 refers to the deduplication of all prisoners
in incarceration in different states on July 1, 2017. The 2nd row refers to the one-to-one match of Washington state voter
records using the 2008 and 2012 voter files. Row 3 refers to the deduplication of the corrupted DMF. For each exercise,
we use the baseline random forest model generated from the 1,000,000 observation training sample. For the prisoner dedu-
plication exercise, there are no “true matches” so precision and recall cannot be calculated. The low false positive rate in
row 1 suggests that the model is not overly permissive when identifying matches. Rows 2 and 3 suggest that the model
performance is dependent on the target data population, though the model performs well in both the Washington voter
match and the corrupted DMF match. Because there are an excessive number of true negatives, which swamp the accuracy
and false positive rates in each external application, we limit the ratio of false negatives to true matches at a ratio of 10:1
where possible. Since by construction there are no true matches in the July 1 prisoner application, this adjustment is not
feasible. Otherwise, the accuracy rate for all models would be 1.00 and the false positive rate would be 0.00.

43



Gross and Mueller-Smith (2021) Draft date: May 12, 2021

For Online Publication

A Generating a hand-coded Sample

Many supervised learning algorithms are estimated using training data created through a
process of hand-coding and clerical review. To quantify the benefit of our methodology, we
construct a version of the training dataset that we would need to generate in the absence of
a biometric ID linking observations.

We take a 5,000 observation random sample of the candidate pairs created from our
blocking strategy, and have multiple research assistants code each observation to determine
whether the two individuals represent the same person.40 Approximately 31% of the pairs
are from the Harris County Court data and 69% are from the Texas Prison data. For each
pair in the random sample, we include the name, date of birth and race of each individual
to be used as match variables by the research assistant. For the court data, we also include
information about the charge associated with each observation as well as the final disposition.
For the prison movement data, we include whether the observation is a prison entry or exit
and the date of the movement.

We instruct the RAs to code a match only when they are confident that a given pair
represents the same person. Each observation in the 5,000 pair sample is coded independently
by 3 analysts. For the final training sample, we take the mode designation for each pair, so if
2 analysts code it as a match, it is considered a match. If only one analyst codes it a match,
we consider it a non-match.

Of the 5,000 candidate pairs, the RAs coded 161, or 3.2% as a match. The RAs correctly
identified 92% of the “true-matches” while 4% of the hand-coded matches are incorrect, both
according to the underlying biometric ID.

B Defining prediction algorithms

Deterministic

The deterministic model represents a conservative, ad-hoc strategy of record linkage based on
exact matches. Using first name, last name, middle name and the three components of date
of birth (month, day, year), we define a statistical match as any pair that has an exact match
on 5 out of 6 non-missing components. As an example, two observations with the same birth
date, first name and last name but a different middle name would be considered the same

40Another possible strategy could take a demographically stratified sample to ensure that specific demo-
graphic groups are sufficiently represented in the training sample. While this may improve model performance
within smaller demographic groups, it could come at the expense of worse performance in larger demographic
groups and consequentially worse overall performance given a fixed budget constraint on the total number of
feasible hand-coded training observations.
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person by the deterministic algorithm.

Naives Bayes Classifier (Discrete and Kernel)

We use Sayers et al. (2015) as a template to implement a Naive Bayes Classification (NBC)
model using string comparators. This model is functionally equivalent to the one proposed
by Winkler (1990) and accounts for typographical errors in matching variables by utilizing a
string distance function instead of a binary comparator. String distance comparators allow
two strings to get a positive match weight, even if they are not identical. To run the NBC
model, we must estimate a set of match weights that determine the odds that a pair is a
match given a vector of matching variables. For each continuous comparison variable, we
estimate the probability that the comparison variable is a match, conditional on the true
match status. We consider partial agreement when a continuous distance metric measured on
the [0,1] interval has a value of 0.85 or greater. We use the estimated weights to generate a
score for each pair, and set a threshold by maximizing the F-Score over the score space.

Next, we test a minor variant to the Naive Bayes Classifier, by estimating the conditional
distribution of continuous comparison variables through kernel density estimation (Hastie
et al., 2016; Pérez et al., 2009). This flexible NBC does not require us to discretize continuous
match variables and instead allows to flexibly estimate their conditional probabilities. The
match weights for discrete variables are unchanged in this algorithm.

To operationalize the continuous NBC, we estimate kernel density functions for the the
distribution of each continuous variable, conditional on match status. This implies that for each
variable, we estimate two kernel density distributions: one for the distribution conditional on a
match, and the other for the distribution conditional on non-match. We use the Epanechnikov
kernel function to estimate the each distribution.

Once we estimate the probability distribution functions for the continuous variables, we
are able to construct weights at each point of the distribution by taking the natural log of the
P(match)/P(non-match)for each value in the support of the contiuous variable. Once we have
match weights for each variable, we aggregate the weights for all variables and determine the
optimal threshold by maximizing the F-Score over the score space.

Support Vector Machine

Support Vector Machine models (SVM) are another type of supervised classification algorithm.
SVM models perform classification by using training data to construct a hyperplane that
separates the training data into target classes. In ideal applications, the training data can be
perfectly separated by a hyperplane; however, in many cases, a perfectly separating boundary
is not possible. For example, one could imagine two pairs of observations with the same name
and birthday. If one pair represents the same person, while the other pair represents two
different people, it would be impossible to construct a hyperplane that would separate these
two pairs.
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We implement an SVM model using the Stata application written by Guenther and
Schonlau (2016). We use the radial basis function kernel and conduct a grid search as
described by Guenther and Schonlau to identify the optimal weight and scaling parameters
on a 1% sample of the training data set. For each parameter, we run the model at 8 evenly
spaced points within the interval [0.001,10,000]. Since there are 2 parameters and 8 possible
values for each, we run the model 8× 8 = 64 times and pick the parameter values for the run
with the highest resulting F-Score. Once the optimal tuning parameters are established, we
run the SVM on the full sample of 1,000,000 training pairs. This application of SVM takes a
substantial amount of time to both train and estimate.

Lasso Shrinkage Model

Least absolute shrinkage and selection operator (Lasso) models are a popular method for
variable selection and prediction. Lasso models are shrinkage estimators, meaning that some
independent variables are essentially removed from the final model used for prediction. This
helps to avoid overfitting in the presence of many explanatory variables (Hastie et al., 2016).
More formally, we estimate a linear probability model of the form:

TMi,j = βX + εi,j st
K∑
β=1
|βk| <= t

where TMi,j is the match status of observations i,j as measured by the biometric ID and
X is a matrix of match variables. We use the Lasso command written by Ahrens et al. (2018)
for Stata. The constraint, t, is selected using the extended Bayesian information criteria
proposed by Chen and Chen (2008).

After estimating the Lasso model, we use the coefficients on the selected variables to
predict the match probability of each pair in our training set. Note that since this is a linear
probability model, the resulting score is not constrained to be in the [0,1] interval. We pick
the match threshold that maximizes the F-Score over the match space.

Random Forest (Standard, Demographic Enhanced, and hand-coded)

We implement a random forest machine learning algorithm proposed by Breiman (2001), and
developed as a Python application in the Scikit-learn package by Pedregosa et al. (2011).
The model is run using 4 parallel processors.

Our standard random forest model has 250 trees, where each tree is estimated on a
bootstrapped sample of 1,000,000 observations with replacement. The maximum number of
splitting variables is determined by the number of inputs/3 which is equal to 15. The splitting
variables on each tree are chosen at random, so every tree will have a different group of input
variables. Once the model is finished estimating on the training pairs, we are able to predict
in sample and out of sample classification by taking the mode prediction over the 250 trees.
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The demographic enhanced random forest model is the same as the standard model, except
we add indicator variables to determine whether 1 or both observations is female, as well as
whether 1 or both observations are white, black or hispanic. These extra demographic variables
raise the number of inputs so the maximum number of splitting variables to be selected is 18.
We run this model on 250 trees where each tree is estimated using a bootstrapped sample of
1,000,000 pairs.

Lastly, we run a version of the random forest model with a 5,000 observation training
sample that is hand-coded by research assistants. 41 In this model, we estimate 250 trees where
each tree is split using a bootstrapped sample of 5,000 observations from the hand-coded
pairs. Because we include demographic variables, the maximum number of variables that are
eligible to be selected is 18.

Neural Net (Perceptron and Hidden Layers)

Neural networks are a class of prediction models designed to mimic the function of a human
brain. Neural networks are capable of creating highly non-linear models through the use of
hidden layers that receive signals from input (match) variables and then transmit a signal
through a linking function. One can increase the complexity of a neural network by increasing
the number of hidden layers and nodes within each hidden layer.

First, we implement a neural network with one hidden layer comprised of 24 nodes, and
use Stata’s BRAIN command (Doherr, 2018) to estimate the output layer. The initial signal
value for each node in the hidden layer is randomly chosen in the interval [-0.25, 0.25]. For
each iteration through the training sample, the observations are sorted randomly and then
the signal weights for each node are updated subject to the training factor which is set at
0.25. After a full cycle through the training sample, the data are quasi-randomly resorted and
then the same process of signal updating occurs. In total, we include 500 iterations through
the training sample. After estimating the model, we are left with the predicted probability
that each training pair is a match. To assign statistical matches based on the predicted score,
we select the threshold that maximizes the F-Score across the score space.

Next we implement a neural network with no hidden layers, sometimes referred to as a
simple perceptron. The specifications for estimating the simple perceptron are the same as the
hidden layer model, and we use the predicted probabilities after iterating 500 times through
the training sample. The match threshold is assigned using the same F-stat maximization
routine.

41See Appendix B for details on sample construction.
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C Applying a corruption algorithm to the Social Security Admin-
istration’s Master Death File

In many record linkage applications, it is prohibitively difficult to acquire data that can be
used to test the out of sample performance of a matching algorithm. We follow a common
strategy (Christen and Churches, 2002; Christen, 2012; Ferrante and Boyd, 2012; Bailey et al.,
2017, for example) by testing our algorithm on a synthetic, corrupted data set. As an input,
we use the Social Security Administration’s Death Master File (DMF). The DMF records
the social security number, birth date, name and date of death for all deaths reported to the
SSA. We downloaded a publicly available copy of the file that goes through November 30,
2011, which contains approximately 85 million records. Using these variable inputs, we are
able to construct a new data set that has been randomly edited to include a number of data
errors common to large tables. Below is a description of the methodology used to create this
synthetic data.

We limit our sample to individuals that died between the years 2000-2009, leaving us with
a base file of approximately 20.3 million unique death records. The original data include very
few middle names or middle initials. Because our main algorithm is estimated on data that
includes middle names, we impute middle initials for those who are missing names based on
the year and location of birth. 42

Next, we identify three separate, common transcription errors -name standardization
edits, phonetic edits and general edits- that we use to corrupt the DMF data file. The name
standardization edits replaces a name with a common nickname or vice-versa. For example, a
record with a first name of “Matt” could be adjusted to instead have the first name “Matthew”.
The phonetic edits identify character groups that are commonly used interchangeably due to
their similar phonetic sound. For example the letters “ck” and “k’ are often used to make
similar sounds and therefore are a common source of misspelled names. The general edits
are intended to mimic errors as a result of faulty data entry and optical charcter recognition
(OCR). These include mostly typographic errors and account for mistakes common to users of
a QWERTY keyboard. Common examples of OCR errors include interchanging “m” and “n”
or “l” and “i”. Note that the phonetic and general edits use data files from corruptor software
written by Tran et al. (2013) to identify common errors in these two categories. These files
have been supplemented by other common phonetic misspellings.

Beginning with our base file, we corrupt our data in the following order: (1) name stan-
dardization edits, (2) phonetic edits and (3) general edits. After removing observations that
do not receive an edit, we are left with approximately 4 million observations (20%) that have
at least one type of edit. Of the edited observations, 42% have a name standardization error,
34% have a phonetic error and 32% have a general error. Next, we append the base file to
the corrupted observations, resulting in a dataset of 24.3 million records, where 20 million
are original records, and 4 million represent corrupted records from at least one of the three

42Based on the first three digits of the SSN, we are able to determine the individual’s state of birth using
the crosswalk published by the SSA at https://www.ssa.gov/employer/stateweb.htm. Note that the SSA
stopped allocating SSN by geography in 2011.
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possible edits.
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Table A.1: Description of matching variables

Metric Variables Number of
features

Jaro-Winkler distance (JW)

first, middle,
last, first
standard-

ized, middle
standardized

5

Levenshtein distance (LD)

first, middle,
last, first
standard-

ized, middle
standard-
ized, birth

month, birth
day, birth

year

8

Levenshtein distance normalized by string length (LDN)

first, middle,
last, first
standard-

ized, middle
standardized

5

Missing indicator middle 1

Exact match indicator (EM)

first, middle,
last, first
standard-

ized, middle
standardized

5

Soundex match indicator first, middle,
last 3

Phonex match indicator first, middle,
last 3

Date distance date,month,
day, year 4

Uniqueness interactions

first (EM,
JW, LD,
LDN),

middle (EM,
JW, LD,
LDN), last
(EM, JW,
LD, LDN)

12

Total variables 46

Each row represents a metric used in the matching algorithm. First, middle and last refer to individual name components,
while first and middle standardized refer to the root name as determined by the census bureau crosswalk. Birth month, day
and year refer to the individual components of birth date. For example, the matching algorithm includes the Jaro-Winkler
distance for each name component listed under the variable column. In total, there are 46 variables used in the baseline
model.
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