Coding self-assessment

Harris Coding Camp

Summer 2025

As part of the statistics curriculum, you will be asked to analyze data using the programming language R. R is an open source language that is widely used by data analysts and data scientists. In the coding camp and coding lab, we provide an introduction to R coding focused on data analysis.

This is a self-assessment. If you feel comfortable completing this assignment by yourself (with the help of Google and/or other resources), then you are free to skip the coding camp and coding lab. Otherwise, you can use this to pick the right track for you.

Task $1:^1$

- 1. Install R and RStudio.
- 2. Install the package readxl and tidyverse.
- 3. Adjust the following code block to read in the provided data set: incarceration_counts_and_rates_by_type_over_time.xlsx

- 4. What does the code library(readxl) do and why is it necessary?
- 5. Why do you need to set a working directory (setwd())?
- 6. How many vectors are there in this dataset? How many observations?

If you had trouble with readxl, we provide a csv file as well. You can load the data with the following code:

```
incarceration_data <- read_csv("incarceration_counts_and_rates_by_type_over_time.csv")</pre>
```

¹Copying and pasting from the pdf will create issues in syntax–particularly it messes up the type of quotes used. We provide a file with this code in a text file. Alternatively, you can re-type the code or copy and paste and then fix syntax issues.

Task 2:

We want to analyze state prison counts by decade. We'll prepare the data in the following ways. Store the following changes in a new tibble (data frame) called state_data.

1. Add a column called decade that reflects which decade the observation comes from. You can run the following code to add the column:

- 2. By building on the code above, filter the data so that you only have data from State prisons.
- 3. Then, use the select function to reorder the columns so that your data is organized as below:

```
## # A tibble: 10 x 4
##
      type
                    counts decade year
##
      <chr>
                     <dbl>
                            <dbl> <dbl>
##
   1 State prisons 85239
                             1920 1925
##
   2 State prisons 91188
                             1920
                                  1926
   3 State prisons 101624
                             1920
                                   1927
   4 State prisons 108157
                             1920
##
                                   1928
   5 State prisons 107532
                             1920
##
                                   1929
##
   6 State prisons 117268
                             1930
                                   1930
   7 State prisons 124118
                             1930
                                   1931
   8 State prisons 125721
                             1930
                                   1932
## 9 State prisons 125962
                             1930
                                   1933
## 10 State prisons 126258
                             1930
                                   1934
```

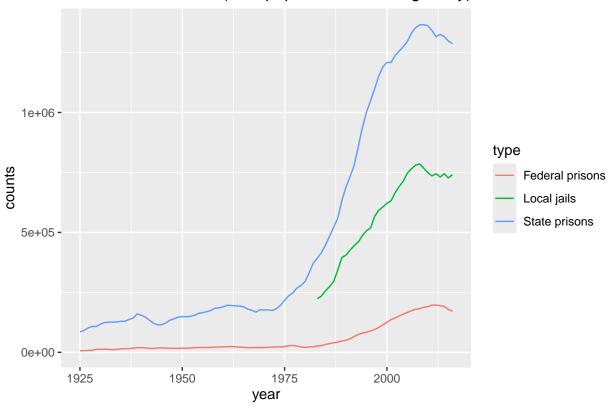
4. Finally, find out the mean and standard deviation of counts for all observations from State prisons.

Task 3:

In this task, you'll use group_by() and summarize() to answer questions about state prison counts by decade.

1. Which decade saw the largest percentage growth in State prisons? Measure percent growth as $\frac{C_{d_e}-C_{d_s}}{C_{d_s}}$ where C_{d_e} is the count at the end of decade and C_{d_s} is the start of the decade). You may consider using the first() and last() functions so that you get the following results.

##	# A	tibble:	10 x 2
##	decade percentage_grow		
##		<dbl></dbl>	<dbl></dbl>
##	1	1920	0.262
##	2	1930	0.365
##	3	1940	-0.0490
##	4	1950	0.245
##	5	1960	-0.0644
##	6	1970	0.581
##	7	1980	1.15
##	8	1990	0.725
##	9	2000	0.129
##	10	2010	-0.0553


Task 4:

You want to make a graph visualizing the change in incarceration counts in the United States over time.

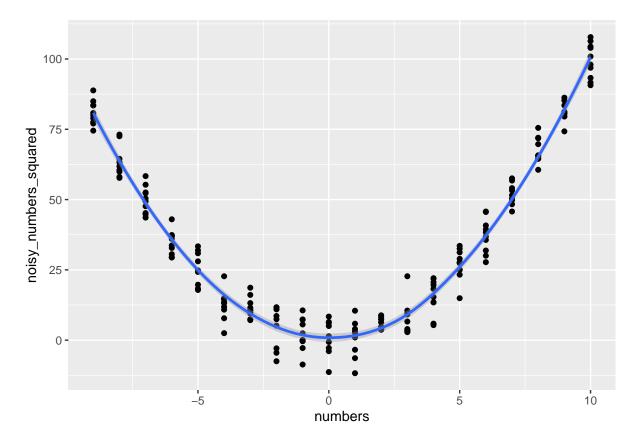
```
incarceration_data %>%
  ggplot(???) +
  geom_???() +
  labs(???)
```

Adjust the code above in order to reproduce the following graph, including the choice of both axes, labels on both axes, choice of line type and title of the graph.

Incarceration counts (total population on a single day) over time

Task 5:

First, let's create two small datasets – Copy and run the code chunk below to assign these to addr and phone.


```
addr <- data.frame(name = c("Alice", "Bob",</pre>
                              "Carol", "Dave",
                              "Eve"),
                    email = c("alice@company.com",
                               "bob@company.com",
                               "carol@company.com",
                               "dave@company.com",
                               "eve@company.com"),
                    stringsAsFactors = FALSE)
phone <- data.frame(fullname = c("Bob", "Carol",</pre>
                                   "Dave", "Eve",
                                   "Frank"),
                     phone = c("919 555-1111",
                                "919 555-2222",
                                "919 555-3333",
                                "310 555-4444",
                                "919 555-5555"),
                     stringsAsFactors = FALSE)
```

- 1. How would you correctly **left join** these two datasets? What is the resulting data frame? Is there any missing value?
- 2. Repeat the above step using **inner join**. What is the resulting data frame? Is there any missing value?
- 3. Repeat the above step using **full join**. What is the resulting data frame? Is there any missing value?

Task 6:

- 1. First, create a new vector called numbers <- rep(seq(-9, 10, 1), 10).
- 2. Then, use a for-loop to calculate the square of each number in numbers and store the results in a new vector called numbers_squared.
- 3. Next, use a for-loop to calculate the square of each number in numbers, add random noise from rnorm(1, sd = 5), and store the results in a new vector called noisy_numbers_squared.
- 4. Now, you should be able to reproduce the graph below:

'geom_smooth()' using method = 'loess' and formula = 'y ~ x'

Task 7:

- 1. Write a function called notice_gpa (basic structure given below) that takes gpa as an input and does the following:
- if gpa less than 2, prints: "Your GPA is gpa. You are on academic probation."
- else if gpa is greater than or equal to 3.5, prints: "Your GPA is gpa. You made the Dean's list. Congrats!"
- otherwise, prints: "Your GPA is gpa".

```
notice_gpa <- function(gpa) {
   if (...) {
      ...
   } else if (...) {
      ...
   } else {
      ...
   }
}</pre>
# When running each of the following, you should get different results!
notice_gpa(1.9)
notice_gpa(3.5)
notice_gpa(3)
```