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Abstract

Starting from the Prentice and Gloeckler [1978] approach to discrete or discretely observed
continuous hazard models, this paper provides several new results on the interpretation, identification,
efficiency and estimation of hazard models.  The approach allows an unknown form for the baseline
hazard and discrete observations of the form usually found in economics.  It is shown that the approach
has a high efficiency relative to fully parametric models.  The model is extended to allow for unobserved
heterogeneity and using the Kiefer and Wolfowitz [1956] theorem, consistency is shown for the case
where both the baseline hazard and the heterogeneity distribution are unknown.  An approach to
estimation based on the results of Turnbull [1974, 1976] is proposed.  Some simulations support the
analytical results on efficiency and show the results of misspecifying the shape of the baseline hazard.



1.  Introduction

In work on hazard models, economists have emphasized the need to allow for unobserved

individual characteristics or heterogeneity.  On the other hand, statisticians have argued for the

nonparametric estimation of the part of the hazard common to all individuals (the baseline hazard).  This

paper combines the two approaches.  The proposed technique leaves the baseline hazard unspecified, but

also introduces unobserved heterogeneity either parametrically or nonparametrically.  This allows

consistent estimation in many situations where currently used estimators are inconsistent.

The econometrics literature has emphasized the importance of unobserved heterogeneity in

hazard models.  Unobservable attributes can be expected to affect failure times.  Lancaster [1979] and

Lancaster and Nickell [1980] provide early discussions of the biases caused by ignoring heterogeneity. 

One solution is to assume that individual attributes are draws from a distribution with a known shape. 

Lancaster assumes that the heterogeneity in the population has a gamma distribution; others have

assumed a lognormal distribution or a discrete distribution.

Heckman and Singer [1982, 1984a, 1986] have argued that this solution is inadequate.  They

contend that parameter estimates depend greatly on the assumed shape of the heterogeneity distribution. 

They propose a nonparametric technique for the estimation of the heterogeneity distribution.  However,

both Lancaster, and Heckman and Singer assume a simple parametric form for the baseline hazard.  The

Weibull hazard is often used despite a lack of theoretical support for any particular shape.  Furthermore,

Trussell and Richards [1985] show that the Heckman and Singer approach is very sensitive to the

assumed baseline hazard.  This is not surprising since a misspecified baseline hazard causes all parameter

estimates to be inconsistent.

The nonparametric estimation of the baseline hazard is important for two additional reasons. 

First, the shape of the baseline hazard is often irregular and unlikely to be well approximated by a simple

parametric form.  For example, studies of unemployment durations have found irregular spikes in the
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     2See Moffitt [1985], Katz [1986], Meyer [1990], and Katz and Meyer [1990].  The spikes appear to be
caused by unemployment insurance.

     3The same is true of marginal likelihood estimation.  The two approaches differ when tied failure
times are present.  Let the number of individuals in the risk set at t (those alive and uncensored just prior
to t) be Rt and let the number of failures occurring at t be dt.  Then the partial likelihood contains a term
for every subset of the risk set at time t which contains exactly dt elements.  The number of such terms is
Rt!/((Rt-dt)!(dt)!).  The marginal likelihood contains a term for every permutation of the dt failures.  The
number of such terms is dt!.  In applications, the number of terms is likely to be extremely large in both
cases.  There are approximations to these likelihoods, but their biases are unclear (see Kalbfleisch and
Prentice [1980] and Cox and Oakes [1984] for a discussion of these issues).

hazard at about 24 and 36 weeks.2  Second, the shape of the baseline hazard is often central to tests of

economic hypotheses.  Heckman and Singer [1984a], Katz [1986] and Katz and Meyer [1990] use

unemployment duration baseline hazard estimates as support for search theory.  Blank [1989] uses

baseline hazard estimates to examine hypotheses about the effects of AFDC.  This suggests that imposing

a shape for the baseline hazard may lead to incorrect conclusions about economic hypotheses.

Statisticians have emphasized the nonparametric estimation of the baseline hazard.  This

approach is often associated with Kaplan and Meier [1958] and Cox [1972, 1975].  Cox's partial

likelihood technique allows consistent estimation of the part of the hazard which varies over individuals

even when the baseline hazard is unknown.  The baseline hazard then can be nonparametrically

estimated.  Unfortunately, partial likelihood has two important drawbacks.  First, the likelihood becomes

intractable when many failures occur at the same time.3  The problem is particularly severe in data

usually encountered in economics, which have many tied failure times.  Second, even without ties,

multiple integrals of the dimension of the sample are required to integrate over the heterogeneity

distribution.  This alone would lead to an intractable likelihood function.
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     4Several papers fit simple hazard models into the single index or transformation model framework. 
See Dabrowska and Doksum [1985], or Stoker [1986], for example.  This approach is attractive, but it
cannot accommodate time dependent covariates and common forms of censoring.  A different approach
is taken by Honoré (1990), who allows arbitrary unobserved heterogeneity, but parameterizes the
baseline hazard.

     5Arguments for continuous time models are given in Singer and Spillerman [1976], Heckman and
Borjas [1980], and Heckman and Singer [1986].

     6Kalbfleisch and Prentice [1980] also discuss some aspects of this model.  Han and Hausman [1986]
extend the Prentice and Gloeckler model to introduce heterogeneity and competing risks.

Two other methods allow an unknown baseline hazard.4  Both methods however, need

modification for unobserved heterogeneity.  First, Moffitt [1985], Green and Shoven [1986], and van den

Berg and van Ours [1994] use a special discrete time model.  The probability of an individual's spell

ending in a period, given survival to the beginning of the period, is a period specific constant times a

function of the exogenous variables for the individual.  This approach is similar in spirit to the method

discussed here, but it has several difficulties.  The introduction of unobserved heterogeneity is difficult,

and the functional form does not guarantee that failure probabilities are between zero and one.  Also, this

model cannot be derived from a continuous time process.  Since there usually is no natural unit of time in

economic problems, it is often easier to interpret coefficients and relate them to economic theory if the

modeling is done in continuous time.  Also, a discrete time model defined for one time interval usually

has a different functional form when applied to another time unit.5

A second method which also allows an unknown baseline hazard is introduced in Prentice and

Gloeckler [1978].6  The present paper proves several properties of this model and extends it to allow

unobserved heterogeneity.  The Prentice and Gloeckler approach has several advantages.  First, it avoids

inconsistency caused by misspecification of the baseline hazard.  Second, individual heterogeneity is

easily added to the model.  Gamma heterogeneity gives a closed form solution for the likelihood and

avoids numerical integration.  Other distributions can be used with some loss in computational
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     7In special circumstances, a second disadvantage may arise.  Covariates which are the same for all
subjects do not have identifiable coefficients.  This problem is even less important than it initially seems. 
For example, if there is a policy change at a given calendar time (which is reflected in one of the
covariates), it will generally occur at a different point in the subject's durations.  Thus, if the subjects
began their spells at different calendar times, the covariates will differ.

simplicity.  By combining the Prentice and Gloeckler approach with the Heckman and Singer approach

one can obtain an estimator which nonparametrically estimates both the baseline hazard and the

heterogeneity distribution.  Third, the method uses data of the form usually found in economics. 

Specifically, the underlying process is assumed to be continuous, but the process is observed only at

discrete times.  Several kinds of censoring are allowed, including censoring which is conditional on the

covariates.

Nonparametric estimation may result in an efficiency loss when the technique does not employ

all available a priori information.7  Fortunately, nonparametric estimation of the baseline hazard usually

causes only a small efficiency loss.  Furthermore, with large economic samples we are willing to use a

possibly inefficient technique if it has a smaller bias.  Section 2 describes the basic model, while Section

3 extensively treats the efficiency issue.  The efficiency results are similar to panel data results from the

linear model.  The close relationship between the Prentice and Gloeckler approach and partial likelihood

is also discussed.  Section 4 describes how unobserved heterogeneity of a known form can be added. 

Section 5 proves, using the Kiefer and Wolfowitz conditions, that the parameters of the model can be

consistently estimated even when the shape of both the baseline hazard and the heterogeneity distribution

are unknown.  Section 6 discusses a reformulation of the model and a new estimation technique.  Section

7 discusses testing.  Section 8 describes the simulations which examine efficiency and bias, while

Section 9 concludes.
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2.  The Basic Model

Economic surveys rarely monitor individuals continuously.  A much more common situation is

panel data which provides information on individuals at discrete times.  Also, retrospective surveys often

give data which are discrete.  For example, the length of unemployment spells is usually given in weeks. 

The following model accounts for the usual discreteness of economic data, but the economic process is

allowed to take place continuously.  As in most other continuous time models, the hazard is

parameterized and estimated.  Continuous time estimates are often easier to interpret and relate to

economic theory than estimates from discrete time models.

Typically, the end of some durations is not observed because an individual leaves the survey. 

This occurrence is called right censoring and is explicitly allowed for in the model.

Following Prentice and Gloeckler, assume that the underlying process for observation i, where

i=1, . . .,N, consists of the positive failure time Ti, the positive censoring time Ci, and the time path of a p

dimensional vector of covariates zi(t).

Assume that the censoring variable is integer valued and has a maximum of T.  Censoring has

this form when individuals are only observed at discrete times and there is a maximum length of

observation.  The censoring time for individual i is also assumed to be independent of Ti conditional on

the path of the covariates.  Let ti=min(Ti, Ci) and let δi=1 if individual i is observed to fail, i.e., Ti < Ci,

and δi=0 otherwise.

Suppose we only observe if ti is in the interval It, where It � [t, t+1) for t=0,1,...,T-1, and   IT � [T,

�).  This will occur if we only have information on individuals at discrete times.  If ti � It, then let ki = t. 

Assume that zi(�) is constant on It for t=0,1,...,ki+δi-1.  Generally, economic data and computational

limitations require this assumption in duration models.  Often in econometrics zi is taken to be



6

     8See, for example, Lancaster [1979] or Kiefer and Neumann [1980].

     9See Diamond and Hausman [1984], and Hausman and Wise [1985].

     10Most of the following results are changed only slightly by replacing exp�zi(t)�β� with ��zi(t)�β�,
where �(�) is positive and increasing.

independent of t.8  When zi is not constant over an interval, it has usually been approximated by its within

interval mean.9  Thus, the data available to the econometrician are (ki, δi, {zi(t)}), where ki equals the

integer part of min(Ti, Ci), and {zi(t)} denotes the path of the covariates, i. e. the values of the covariates

when t=0,1,...,ki+δi-1.

Let the hazard for individual i be of the Cox [1972] proportional hazards form10 with baseline

hazard λo(t),

(2.1) λi(t) � λo(t)exp�zi(t)
�β�

(2.2) lim
h�0�

prob t � h > Ti � t�Ti � t
h

� λo(t)exp zi (t)
�β ,

where 0 	 t 	 T < �, and λo(t) and β are unknown.

The probability that a duration will last until t+1 given that it has lasted until t is

(2.3)

P Ti � t�1�Ti � t � exp ��
t�1

t

λi(u)du

� exp � �
t�1

t

λo(u)du exp zi(t)
�β

� exp �exp γ(t) � zi (t)
�β , where
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(2.4) γ(t) � ln �
t�1

t

λo(u)du .

The likelihood of the data is

(2.5) L(γ,β)�Π
N

i�1
1 � exp � exp γ ki � zi ki

�β δi Π
ki�1

t�0
exp � exp γ(t) � zi (t)

�β ,

where γ = [γ(0) γ(1) ... γ(T-1)]�  .

The likelihood is now a function of a finite number of parameters and is easily maximized.  The

log-likelihood function can be written:

(2.6) L1(γ,β) � �
N

i�1
δi log 1�exp �exp γ ki � zi ki

�β � �
ki�1

t�0
exp γ(t) � zi (t)

�β .

Three more substitutions simplify things further.  Define

Di(t) = 1 if ki = t and δi = 1, i.e., the end of the spell was observed during the tth interval,

     and 0 otherwise,

Ri(t) = 1 if ki � t+1, i.e., the spell lasted at least until the end of the tth interval,

     and 0 otherwise, and

hi(t) = exp{γ(t) + zi(t)'β}  .

Note that

(2.7) hi(t) � �
t�1

t

λ(u)exp zi(t)
�β du ,

the average hazard over the interval It.  The final expression for the log-likelihood is
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(2.8) L1(γ,β) � �
N

i�1
�
T�1

t�0
Di (t)log 1�exp �hi (t) � Ri (t)hi (t) .

Maximization of L1(γ,β) allows consistent estimation of β and , (t=0,1,...,T-1). γ(t)�1n�
t�1

t

λ(u)du

Two baseline hazards, λo(t) and λo'(t), are observationally equivalent if γ(t) = γ'(t) for all t, where

.  In effect, one identifies the equivalence class in which λo (t) lies; the equivalenceγ�(t) � 1n�
t�1

t

λ�o(u)du

classes being defined by unique sequences

of γ(t), (t=0, 1,...,T-1).

The first and second partial derivatives of the log-likelihood can now be written as

(2.9)

L1


γ(t)
� �

N

i�1
Di(t)

hi(t)exp �hi(t)
1�exp �hi(t)

� Ri(t)hi(t) , (t�0,1,...,T�1)

(2.10)

L1


β
� �

N

i�1
�
T�1

t�0
Di(t)zi (t)

hi(t)exp �hi(t)
1�exp �hi(t)

� Ri(t)zi(t)hi(t) ,

(2.11)

2L1


γ(t)2
� ��

N

i�1
Di(t)

hi (t)exp �hi (t) exp �hi (t) �hi (t)�1

1�exp �hi (t)
2

�Ri (t)hi (t) , (t�0,1,...,T�1)

(2.12)     for all 

2L1


γ(t)
γ(τ)
� 0 t � τ

(2.13)     

2L1


β
β�
� ��

N

i�1
�
T�1

t�0
Di(t)zi(t)zi(t)

�
hi(t)exp �hi(t) exp �hi(t) � hi(t) � 1

1�exp �hi(t)
2

� Ri(t)zi(t)zi(t)
�hi(t)
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(2.14)

2L1


β
γ(t)
� ��

N

i�1
Di(t)zi(t)

hi (t)exp �hi (t) exp �hi (t) �hi (t)�1

1�exp �hi (t)
2

�Ri (t)zi(t)hi (t) .

The Interpretation of the First Order Conditions

The first order conditions for a maximum of the log-likelihood have a simple interpretation.  exp�-

hi(t)�/[1-exp�-hi(t)�] is the odds ratio or the ratio of the survival probability to the probability of failing in

the interval It.  
L1/
γ(t)=0 requires that the average hazard for those who survive the interval It equal the

average hazard for those that fail times the estimated odds ratio.  If zi(t)=z(t) for all i, this requires that

the predicted fraction of individuals surviving an interval equal the actual fraction.  If zi(t) varies over i,

the predicted fraction equals the actual fraction after weighting by the hazards.  This occurs because in

the proportional hazards model the effect of a unit change in γ(t) on the hazard is proportional to the

hazard.  
L1/
β=0 requires that this same equality hold after weighting by each of the covariates and

summing over all time periods.  Again, the weighting by the hazard occurs because the effect of a unit

change in zi(t) is proportional to the hazard.

3.  Efficiency Comparisons

The main alternative to the Prentice and Gloeckler approach is maximum likelihood with an

assumed shape for the baseline hazard.  The advantage of maximum likelihood is a possible efficiency

gain if the assumed shape is correct.  This section compares the efficiency of the Prentice and Gloeckler

approach to maximum likelihood when β is estimated and the shape of the baseline hazard is known. 
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     11See Wallace and Hussain [1969], or Maddala [1971] for panel data efficiency comparisons.

Note that if the assumed baseline hazard is incorrect, only the Prentice and Gloeckler approach gives

consistent estimates.

The first part of this section explains how the hazard model comparisons are analogous to familiar

efficiency comparisons from panel data.  The comparisons are then derived formally.  The Prentice and

Gloeckler approach is then compared to partial likelihood, which is very similar.  All of these

comparisons use the average asymptotic information matrix, since its inverse is the asymptotic variance. 

The gain from parameterizing the baseline hazard, rather than using the Prentice and Gloeckler approach,

is shown to be small in many cases.

The comparison of the Prentice and Gloeckler approach to parametric maximum likelihood is very

close to the comparison of fixed effects to OLS in panel data.11  The Prentice and Gloeckler baseline

hazard parameters are analogous to time dummies in panel data.  Specifically, consider the linear model

(3.1) Dit � γ � Z �

it B � �it ,

where i=1,. . .,Nt indexes individuals, and t indexes time periods.

The version of the model with fixed time effects is

  (3.2)
Dit � D. t � Zit � Z. t

�B � �it � �. t , or

Dit � γt � Z �

it B � �it ,

where  and similarly for .  Let .D. t �
1
Nt

�
Nt

i�1
Dit , Z. t and �. t Var �it�Zit � σ2

�

Note that time means are subtracted in (3.2) rather than individual means.

The average asymptotic information matrix for  from (3.1) is B̂OLS
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 while that of  from (3.2) is , for fixed T letting Nt � � for all t.  TheVar(Z)σ�2
�

B̂FE E[Var(Z�t)]σ�2
�

expectation here is over t, which will be nontrivial if the sample is unbalanced.

A useful equation is

Var(Z) = E[Var(Z|t)] + Var[E(Z|t)]  .

E[Var(Z|t)] is the within variance of Z, and Var[E(Z|t)] is the between variance.  Fixed effects uses only

the within time period variation in Zit.  The time period dummy variables in (3.2) absorb the variation

over time in the mean of Zit.  When OLS is consistent, it also allows use of the between variance.

Maximum likelihood with λo(t) assumed constant is analogous to OLS, while the Prentice and

Gloeckler approach is similar to fixed effects.  The baseline hazard parameters absorb the variation over

time in the mean of the covariates.  In microeconomic data there is typically much greater variation in the

explanatory variables across individuals at a point in time than in the average over time.  Usually, fixed

effects estimation removes individual means causing a large efficiency loss.  Here, time means are

removed.  The much larger variance across individuals will in most cases cause maximum likelihood to

have only a small efficiency gain over the Prentice and Gloeckler approach.

A revised equation (3.1) is probably closer to a typical hazard model.  Suppose the effect of time is

parameterized using a vector of explanatory variables Yt, which is common to all individuals and

includes a constant.  Then, model (3.1) becomes

(3.3) Dit � Y �

t ζ � Z �

it B � �it .

The fixed effects equation is unchanged and has information equal to  times the within variance in Z. σ�2
�

The average asymptotic information for β using OLS in (3.3) is no longer  but Var[Z]σ�2
�

E[Var(Z�Y)]σ�2
�
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instead.  E[Var(Z|Y)] is smaller than Var[Z] since it is the residual variance in Z after projection onto the

Y space.  This residual variance is the within variance plus a fraction of the between variance.  The

fraction will be small if linear combinations of the elements of Y closely approximate the time pattern in

the mean of Z.  Since the within variance is usually larger than the entire between variance, fixed effects

will likely have a high efficiency.  A similar result occurs when the Prentice and Gloeckler approach is

compared to maximum likelihood with the baseline hazard parameterized.

Consider the flexible parameterization of the baseline hazard, λo(t) = exp�y(t)'ζ�, which implies that

λi(t) = exp�y(t)'ζ + zi(t)'β�.  This general parameterization includes the Weibull; let y(t)' = (1,ln(t)).  By

using the Prentice and Gloeckler approach rather than assuming a shape for the baseline hazard one again

loses a fraction of the between variance in z.  The fraction is again the part of the between variance that

cannot be predicted using linear combinations of the y vector.  The fraction is likely to be small relative

to the within variance used by the Prentice and Gloeckler approach.  This result is complicated by

weights which enter the expectations and variances.  This issue is discussed extensively later.  The next

several pages make the above intuitive arguments precise.

The variance of the estimators are compared by examining their information matrices.  Inversion of

the average asymptotic information matrices gives the asymptotic variances.  Consider the observed

information matrix S for the Prentice and Gloeckler approach: 

S �

S11 S12

S21 S22

�

�


2L1


γ
γ�
�


2L1


γ
β�

�


2L1


β
γ�
�


2L1


β
β�

.

The marginal information on β, , is given byS 22 �1
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(3.4) S 22 �1
� S22 � S21S

�1
11 S12 ,

using the partitioned inverse formula.  Equation (3.4) can be rewritten in a form which gives it a

straightforward interpretation.  It is useful to rewrite (2.13) as

(3.5)

S22 � �


2L1


β
β�

� �
T�1

t�0
�
N

i�1
Di (t)zi (t)zi (t)

�
hi(t)exp �hi(t) exp �hi(t) � hi(t) � 1

1�exp �hi(t)
2

� Ri(t)zi(t)zi(t)
�hi(t)

� �
T�1

t�0
�
N

i�1
Wi(t)zi(t)zi(t)

�

where

(3.6) Wi(t) � Di(t)
hi(t)exp �hi(t) exp �hi(t) � hi(t) � 1

1�exp �hi (t)
2

� Ri(t)hi(t)

Note that Wi(t) � 0, for all i and t.  Equations (2.11) and (2.14) can be rewritten in the same manner as

(3.5).  Equation (2.11) yields

(3.7)

S11 t
� �


2L1


γ(t)2

� �
N

i�1
Wi (t)

,

            

where  denotes the (t+1)st diagonal element of S11.  The off-diagonal elements of S11 are all zero. S11 t

Equation (2.14) yields
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(3.8)

S21 t
� �


2L1


β
γ(t)

� �
N

i�1
zi(t)Wi(t)

,

where  denotes the (t+1)st column of S.S21 t

The observed marginal information for β, equation (3.4), can now be written as

(3.9)

S 22 �1
� �

T�1

t�0
�
N

i�1
zi(t)zi(t)

�Wi(t)

��
T�1

t�0
�
N

i�1
zi(t)Wi(t) �

N

i�1
Wi(t)

�1

�
N

i�1
zi(t)

�Wi(t) .

The average information is obtained by dividing by the sample size.  After some manipulation, it can be

written as

(3.10) 1
N

S 22 �1
� �

T�1

t�0

1
N �

N

i�1
Wi(t) �

T�1

t�0

1
N �

N

i�1
Wi(t)

�
T�1

t�0

1
N �

N

i�1
Wi(t)

1
N �

N

i�1
zi(t)zi(t)

�Wi(t)

1
N�

N

i�1
Wi(t)

�

1
N�

N

i�1
zi(t)Wi(t)

1
N�

N

i�1
Wi(t)

1
N�

N

i�1
zi(t)

�Wi(t)

1
N�

N

i�1
Wi(t)

.

This information matrix for the Prentice and Gloeckler approach will be compared to the fully

parametric maximum likelihood information matrix.  A flexible parameterization of the baseline hazard

is λo(t) = exp�y(t)�ζ�, which implies that λi(t) = exp�y(t)�ζ + zi(t)�β�.  y(t) is a q dimensional vector constant

on each interval (one component of y(t) can vary within intervals).  The vector y(t) is also assumed to

include the constant 1.  This general parameterization includes the Weibull; let q=2 and y(t)'=(1, ln(t)). 

The marginal observed information matrix for β using maximum likelihood is now 
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S̃ �

S̃11 S̃12

S̃21 S̃22

�

�


2L2


ζ
ζ�
�


2L2


ζ
β�

�


2L2


β
ζ�
�


2L2


β
β�

.

The submatrices are

(3.11) S̃11 � �
T�1

t�0
�
N

i�1
y(t)y(t)�Wi(t)

(3.12)  andS̃21 � �
T�1

t�0
�
N

i�1
zi(t)y(t)�Wi(t)

(3.13) S̃22 � S22 .

The marginal information on β when maximum likelihood is used is then

(3.14)

S̃ 22 �1
� S̃22 � S̃21S̃

�1
11 S̃12

��
T�1

t�0
�
N

i�1
zi(t)zi(t)

�Wi(t)

��
T�1

t�0
�
N

i�1
zi(t)y(t)�Wi(t) �

T�1

t�0
�
N

i�1
y(t)y(t)�Wi(t)

�1

�
T�1

t�0
�
N

i�1
y(t)zi(t)

�Wi(t) .

The average information can be written as

(3.15)   1
N

S̃ 22 �1
�

1
N �

T�1

t�0
�
N

i�1
Wi(t)

1
N �

T�1

t�0
�
N

i�1
zi(t)zi(t)

�Wi(t)

1
N �

T�1

t�0
�
N

i�1
Wi(t)

�

1
N�

T�1

t�0
�
N

i�1
zi(t)y(t)

�Wi(t)

1
N�

T�1

t�0
�
N

i�1
Wi(t)

1
N�

T�1

t�0
�
N

i�1
y(t)y(t)�Wi(t)

1
N�

T�1

t�0
�
N

i�1
Wi(t)

�1
1
N�

T�1

t�0
�
N

i�1
y(t)zi(t)

�Wi(t)

1
N �

T�1

t�0
�
N

i�1
Wi(t)

.
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Under regularity conditions, the average information matrices  and  converge.  This result1
N

S 22 �1 1
N

S̃ 22 �1

is stated as a proposition. 

PROPOSITION 1 (Convergence of Information Matrices):

If (Ti, Ci, �zi(t), t=0,1,...,T-1�), (i=1,...,N), are independent, identically distributed random vectors, �zi(t),

t=0,1,...,T-1� has bounded second moments, and y(t), t=0, . . .,T-1 is nonstochastic and finite, then as N � �

(3.16)   , and

1
N

S 22 �1�
p

W Ew Ew zz ��t � Ew z�t Ew z ��t

� W Ew [zz �] � Ew Ew z�t Ew z ��t � W Ew Varw z�t

(3.17) 1
N

S̃ 22 �1
�
p

W Ew zz �
� Ew zy � Ew yy � �1Ew yz �

where   and  denote the weighted expectation and variance,W �
plim
n�� �

t�1

t�0

1
N �

N

i�1
Wi (t) Ew , Varw

respectively, weighting by the Wi(t).

PROOF:

[This will be replaced by conditions for the consistency and asympotical normality of the estimators]

The WLLN implies that

plim 1
N �

N

i�1
Wi (t) � E[W(t)] ,

W � �
T�1

t�0
E[W(t)] ,

 andplim 1
N �

N

i�1
zi (t)Wi � E[z(t)W(t)] ,
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plim 1
N �

N

i�1
zi (t)zi(t)

�Wi(t) � E[z(t)z(t)�W(t)] ,

provided that the expectations on the right exist.  Remember that

Wi (t) � Di (t)
hi (t)exp �hi (t) exp �hi (t) � hi (t) � 1

1 � exp �hi(t)
2

� Ri (t)hi (t) .

 

The first term of Wi(t) is bounded, while the second is not since hi(t) may be infinite.  However, there exists a ∆

such that E[Ri(t)hi(t)|zi(t)] 	 exp�-hi(t)�hi(t) < ∆ < �.  The law of iterated expectations then gives the existence of

the required moments.  The above results imply that

1
N

S 22 �1�
p

W�
T�1

t�0

E W(t)
W

E z(t)z(t)�W(t)
E W(t)

�
E z(t)W(t)

E W(t)
E z(t)�W(t)

E W(t)

1
N

S̃ 22 �1
�
p

W
�
T�1

t�0
E z(t)z(t)�W(t)

�
T�1

t�0
E W(t)

�

�
T�1

t�0
E z(t)y(t)�W(t)

�
T�1

t�0
E W(t)

�
T�1

t�0
y(t)y(t)�E w(t)

�
T�1

t�0
E W(t)

�1

�
T�1

t�0
E y(t)z(t)�W(t)

�
T�1

t�0
E W(t)

.

Rewriting the above expressions as weighted expectations completes the proof. Q.E.D.

Equation (3.16) indicates that the information from the Prentice and Gloeckler approach is W times the

within variance in z.  To interpret the information matrix for maximum likelihood with a paremeterized baseline

hazard, rewrite the right-hand side of (3.17) as

(3.18)
W Ew zz �

� Ew zy � Ew yy � �1Ew yz �
� W Ew zz �

� Ew Ew z�t Ew z ��t

� W Ew Ew z�t Ew z ��t � Ew zy � Ew yy � �1Ew yz � .
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The second term on the right-hand side above is the efficiency gain from using maximum likelihood rather than

the Prentice and Gloeckler approach.  This term is a fraction of the between variance in z equal to the variance of

Ew[z|t] minus its projection onto the y space.  The Prentice and Gloeckler approach is fully efficient when Ew[z|t]

= Ay(t) for some p by q matrix A.

In microeconomic data there is typically much greater variation across individuals than variation in the

population mean over time.  In hazard models, many of the explanatory variables are constant over time.  The

much larger variance across individuals will likely cause the Prentice and Gloeckler approach to have a relatively

small efficiency loss for most elements of β.  If a time varying explanatory variable is the same for almost all

individuals, its coefficient may be imprecisely estimated unless the baseline hazard is known a priori.

A complete discussion of the components of the variance of z needs to cover the weights which alter the

weighted distribution of z over time.  The weights, which were given earlier in equation (3.6), are 

Wi(t) � Di(t)
hi(t)exp �hi(t) exp �hi(t) � hi(t) � 1

1�exp �hi (t)
2

� Ri(t)hi(t) .

For small values of hi(t) (hi(t) < .5), a close approximation which aids the interpretation of the weights is

(3.19) Wi (t) � (1/2)Di (t)hi (t) � Ri (t)hi (t) .
The weights depend on the covariates, the coefficients β, the baseline hazard, and the effect z has on

censoring.  These effects do not necessarily work in the same direction and may cancel each other out.  In most

applications the Ri(t) term is the most important; Di(t)=0 for most t, and the baseline hazard enters hi(t)

multiplicatively so it will not affect Ew[z|t] except through Ri(t).  Since Ri(t) is an indicator variable for survival

until t+1, it will tend to equal one for observations with covariates associated with long durations.  This will

likely induce at least one monotonic function of t, and much of this trend is likely to be absent after projection on

y(t).  In general, one doesn't expect the weights to alter dramatically the earlier conclusions of high efficiency of

the Prentice and Gloeckler approach.
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     12Oakes [1977], Efron [1977], and Cox and Oakes [1984] are closest to this paper.

     13See Kalbfleisch and Prentice [1980] for a summary of several studies.

     14A partial list includes Lancaster [1979], Lancaster and Nickell [1980], Heckman and Borjas [1980],
Heckman and Singer [1984a], Harris [1982], Diamond and Hausman [1984], and Hausman and Wise
[1985].

     15Multiplicative heterogeneity more closely corresponds to the idea of omitted variables.  Additive
heterogeneity is easily handled in this approach.  Let λi(t)=θiλo(t)exp�zi(t)'β� + κi, where κi is independent
of θi, the covariates, and censoring.  The new likelihood involves T additional parameters for E[exp�-tκ�],
(t=0,1,...,T-1).

These efficiency comparisons are almost identical to those comparing partial likelihood and maximum

likelihood in data with the exact failure times.12  A large number of papers have been written on this subject and

they generally conclude that partial likelihood has a high relative efficiency.13  The evidence includes several

Monte Carlo studies.  The Prentice and Gloeckler approach is like partial likelihood in many respects.  Both

estimators make no assumption about the baseline hazard.  Both use only variation in the explanatory variables

across individuals; the over time variation is not used.  In fact, Bailey [1984] shows that in a special case partial

likelihood is asymptotically equivalent to the present model.  This result however, requires knowledge of the

exact times of failure, no tied failure times, and assumes that a separate baseline hazard parameter is estimated

between each time of failure.

4.  Parametric Unobserved Heterogeneity

It is reasonable to assume that the econometrician will not observe all of the determinants of an individual's

hazard.  Numerous authors have emphasized the biases caused by ignoring this variation in the hazard.14  One

reasonable approach, which is used by all of the cited authors, assumes that the heterogeneity enters the hazard

multiplicatively.15  In the present model the hazard then takes the form

(4.1) λi (t) � θiλo(t) exp zi (t)
�β ,
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where θi is a draw from a nonnegative distribution µ(θ), which is independent of the covariates and censoring.  A

log-likelihood is obtained by conditioning on the unobserved θ and then integrating over its distribution.  For the

Prentice and Gloeckler approach one obtains

(4.2) L(γ,β,µ) � �
N

i�1
log �exp �θ�

ki�1

t�0
exp γ(t) � zi(t)

�β dµ(θ) � δi �exp �θ�
ki

t�0
exp γ(t) � zi(t)

�β dµ(θ) .

To implement this approach one typically assumes a shape for the distribution µ(θ).  Estimation without this

assumption is discussed in the next section.  It is plausible that much of the parameter instability found by

Heckman and Singer is due to the assumption of a Weibull baseline hazard.  When the baseline hazard is

nonparametrically estimated, which heterogeneity distribution is chosen may be unimportant.

A convenient and commonly used distribution for θ is the gamma.  The gamma distribution gives a closed

form expression for the likelihood, avoiding numerical integration.  The gamma distribution is used in the

following discussion, although other distributions could be used following the same approach.  If θ is distributed

gamma with mean one (a normalization) and variance σ2, then the log-likelihood becomes

(4.3)
L3 γ,β,σ�2

��
N

i�1
log 1�σ2�

ki�1

t�0
exp γ(t)�zi(t)

�β
�σ�2

� δi 1�σ2�
ki

t�0
exp γ(t)�zi(t)

�β
�σ�2

� �
N

i�1
log 1�σ2�

ki�1

t�0
hi(t)

�σ�2

� δi 1�σ2�
ki

t�0
hi(t)

�σ�2

.

where hi(t) = exp�γ(t) + zi(t)'β�.

5.  Nonparametric Estimation of the Heterogeneity

In a series of papers, Heckman and Singer [1982, 1984a, 1986] argue that the distribution of the population

heterogeneity should be nonparametrically estimated.  They show the sensitivity of parameter estimates to the

assumed distribution for θ, using the Kiefer and Neumann [1981] data.  However, Trussell and Richards [1985]

show that the Heckman and Singer estimator is very sensitive to the assumed shape of the baseline hazard.  A
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     16Cosslett [1983] also relies on the Kiefer and Wolfowitz theorem.  He nonparametrically estimates
the distribution of an additive error term in the binary choice model.

solution to these problems is obtained by combining the Prentice and Gloeckler approach and the Heckman and

Singer approach.  This section proposes an estimator which does not require knowledge of the shape of the

baseline hazard or the heterogeneity distribution.  The results of this section also extend Heckman and Singer

[1984a] to interval data and censoring of the kind typically found in economics.

Heckman and Singer [1984a] is based on the Kiefer and Wolfowitz [1956] theorem on maximum

likelihood estimation in the presence of infinitely many incidental parameters.16  Under various conditions

Heckman and Singer verify the required assumptions for the theorem.  Heckman and Singer assume that the data

contain the exact times of failure.  They also assume that the distribution of the censoring variable Ci is known

and independent of the covariates {zi(t)}.

In most economic applications these assumption do not hold.  Failures are usually grouped in intervals

because the data come from panel surveys or are imprecisely measured.  Furthermore, the distribution of the

censoring variable is usually unknown and likely to depend on the covariates.  For example, in the Moffitt [1985]

study of unemployment durations, Ci is the maximum potential duration of unemployment  benefits.  Ci will

depend on an individual's work history and the state unemployment rate.  The following proof allows interval

data and censoring of an unknown form which may depend on the covariates.

Some notation is helpful before giving the proof of consistency of maximum likelihood applied to equation

(4.2).  Let π � (β,γ)�P, where P is the Cartesian product of (p+T) finite closed subintervals of the real line.  Let θ

denote a value of a random variable Θ taking values in the positive real line and define M � �µ� � the set of

probability distributions with values on the nonnegative real line.  Let a point in the product space Ψ = P x M be

denoted by ψ = (π,µ).  Denote the true values of π and µ by  ψ0=(π0,µ0).  Let m(�z(t)�) denote the frequency

function of the covariates �z(t)�, where (t = 0,1,...,(k-1+δ)).  m(�z(t)�) is assumed to be a bounded density with

respect to Lebesgue measure on the continuous coordinates of �z(t)� and a distribution function on the discrete
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coordinates.  Lastly, denote the probability distribution of δ given �z(t)� by c(δ|�z(t)�).  It is assumed that both m(�)

and c(�) do not depend on ψ.

The random vector (k,δ,�z(t)�) has frequency function fψ(k,δ,�z(t)�) which can now be written as

(5.1)  fψ k,δ, z(t) � m z(t) c δ� z(t) �
�

0

gπ k�δ, z(t) ,θ dµ(θ) ,

where

(5.2) gπ k�δ, z(t) ,θ �

1 � exp �θ h(0) if δ � 1 and k � 0 ,

exp �θ�
k

t�0
h(t) if δ � 0 ,

exp �θ�
k�1

t�0
h(t) � exp �θ�

k

t�0
h(t) if δ � 1 and k � 1 ,

and h(t) = exp �γ(t) + z(t)'β� as before.

Kiefer and Wolfowitz use the metric

d(ψ1,ψ) � d π1,µ1 , π2,µ2 � �
T�p

j�1
arctanπ1j � arctanπ2j � �

�

0

µ1(θ) � µ2(θ) exp��θ�dθ ,

where πij denotes the jth element of πi.

Note that d((πiµi),(π0,π0)) � 0 implies that πi � π0 and µi(θ) � µ0(θ) at all points of continuity of µ0(θ). 

Under assumptions which will be stated shortly, ψ is complete, i.e., all Cauchy sequences in ψ converge

to an element of ψ.  The metric d(�,�) is useful because it makes the space ψ totally bounded.  Since a

complete and totally bounded metric space is compact, the parameter space ψ is compact.
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     17A family of random variables �θj�, j�J, is uniformly integrable iff , uniformly inlim
∆�� �

�θj�>∆

θjdP � 0

j�J.

One comment is needed to clarify how the present model fits in the Kiefer and Wolfowitz

framework.  Kiefer and Wolfowitz assume that m(�), c(�), and gπ(�) are known up to a finite set of

parameters.  However, the maximization of fψ(�) over ψ does not depend on m(�) and c(�), so one can treat

the problem as if these functions were known.

Given independent and identically distributed observations on the random vector (k,δ,�z(t)�), Kiefer

and Wolfowitz give five conditions which imply the consistency of maximum likelihood.  More

precisely, the estimate of π converges almost surely to π0, and the estimate of µ(θ) converges almost

surely to µ0(θ) at all points of continuity of µ0(θ).  With these preliminaries, the main result can be stated

and proved.

PROPOSITION 2 (Nonparametric Estimation of Heterogeneity and Baseline Hazard):

If (A) M is restricted to a class of uniformly integrable17 distribution functions on [0,�),

(B) There exists at least one component of the covariates �zj(t)�, j��1,...,p�, with βj � 0 and
with distribution that has an everywhere positive Lebesgue density for t = 0,1
conditional on some realization of the other covariates �z1(t),...,      zj-

1(t),zj+1(t),...,zp(t)�,

(C) Eψ0
ln


�

0
gπ0

(k�δ,�z(t)�,θ)dµ(θ) > �� ,

then the maximum likelihood of estimator of ψ in (4.2) gives an estimate of π which converges almost

surely to π0 and an estimate of µ(θ) which converges almost surely to µ0(θ) at all points of continuity of

µ0(θ).  A discussion of the assumptions follows the proof.

PROOF:

The five Kiefer and Wolfowitz conditions are verified:
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1. The conditional frequency function 

fπ(k,δ,�z(t)�|θ) � m(�z(t)�)c(δ|�z(t)�)gπ(k|δ,�z(t)�,θ)

is a density with respect to a σ-finite measure ξ defined on

�(0,1),(T,0),(i,j); i = 1,...,T-1,j = 0,1� x RpT  .

dξ = dk dδ dz1(0)...dzp(0)...dz1(T-1)...dzp(T-1), where dk,dδ,dz1(t),...,dzr(t);t=0,1,...,T-1 are counting

measure (the first r coordinates of z(t) are taken to be discrete) and dzr+1(t),...dzp(t); t = 0,1,...T-1

are Lebesgue measure on the real line.

2. (Identification) If ψ1 � Ψ and ψ1 � ψ0 then identification requires that for at least one region A 

�
A

fψ1
k,δ, z(t) dξ k,δ z(t) � �

A

fψ0
k,δ, z(t) dξ k,δ, z(t) .

Suppose , then, since c(�) and m(�) do not depend on , it is necessary thatψ1 � π1,µ1 � π0,µ0 � ψ0 ψ

(*)  �
�

0

gψ1
k�δ, z(t) ,θ dµ1(θ) � �

�

0

gψ0
k�δ, z(t) ,θ dµ0(θ)

for some (k,δ,�z(t)�) such that   fψ0
k,δ, z(t) dξ k,δ, z(t) > 0 .

We prove this proposition by contradiction.  Suppose that (*) holds for k=0,1, i.e.,

(5.3)  and�
�

0

gπ1
k � 0�δ, z(t) ,θ dµ1(θ) � �

�

0

gπ0
k � 0�δ, z(t) ,θ dµ0(θ)
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(5.4) �
�

0

gπ1
k � 1�δ, z(t) ,θ dµ1(θ) � �

�

0

gπ0
k � 1�δ, z(t) ,θ dµ0(θ) ,

for all �z(t)� such that   One can show that this supposition leads to afψ0
(k,δ,�z(t)�)dξ(k,δ,�z(t)�) > 0.

contradiction.

First, let z(0) = z(1) = (0,...,0,zj(0),0,...,0), and let z � zj(0).  If the value of the covariates (z1(t),...,zj-

1(t),zj+1(0),...,zp(t)) in Assumption (B) does not equal zero for t=0,1, one can translate the coordinates so

that it does equal zero.  By assumption (B) fψ0
( ) > 0 for k = 0,1 and all real z.  

Next, one can normalize E[θ] = 1 because θ belongs to a uniformly integrable class so it has finite

mean.  Using the definition of gπ(�), it is easy to see that the two equalities (5.3) and (5.4) are equivalent

to

(5.5)  and�
�

0

exp �θexp γ1(0) � zβ1 dµ1(θ) � �
�

0

exp �θexp γ0(0) � zβ0 dµ0(θ)

(5.6)
�
�

0

exp �θ exp γ1 (0) � exp γ1 (1) exp zβ1 dµ1 (θ)

� �
�

0

exp �θ exp γ0 (0) � exp γ0 (1) exp zβ0 dµ0 (θ) .

Now, by judiciously making substitutions, equations (5.5) and (5.6) can be put in the form of (A.2) in

Elbers and Ridder [1982].  One can then follow their proof.  Define
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     18See Feller [1971, chapter XIII].

r � exp�z� ,

ai(r) � exp γi(0) � exp γi(1) r β ij and

bi �
exp γi(0)

exp γi(0) � exp γi(1)
(i � 0,1) .

where βij  is the jth component of βi .

Let  denote the Laplace transform of µi.φµi
(s) � �

�

0

exp �θs dµi(θ)

Note that the support of r is (0,�) by Assumption (B).  Now equations (5.5) and (5.6) can be rewritten as

φµ1
b1a1(r) � φµ0

b0a0(r) and

φµ1
a1(r) � φµ0

a0(r) for all r > 0 .

These last two equations imply

(5.7) b0a0(r) � φ�1
µ0
φµ1

b1a1(r) � b0φ
�1
µ0
φµ1

a1(r) for all r > 0 .

Define F � φ�1
µ0
φµ1

. Then lim
s�0� F(s) � 0 .

Also, since , one has  = 1 by the �
�

0

θdµ1(θ) � �
�

0

θdµ0(θ) � 1 lim
s�0�F �(s) �

lim
s�0�

φ�

µ1
(s)

φ�

µ0
φ�1

µ0
φµ1

(s)

properties of the Laplace transform.18  From (5.7) one has
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(5.8) F(b1s) = b0F(s) for all s > 0  .

Let  in (5.8), then  for all .  Repeating this substitution givess � b1s
� F b1

2s �
� b0

2F(s �) s � > 0

 for all s > 0, and all positive integers n.  Differentiating with respect to s andF b1
n s � b0

n F(s)

rearranging terms yields

(5.9) F �(s) �

b1

b0

n

F � b1
ns for all n .

Now let n � � in (5.9) and use the fact that 0 < b1 < 1 to obtain

F �(s) � F �(0�) lim
n��

b1

b0

n

� lim
n��

b1

b0

n

for all s > 0 .

This last equation implies  and  for all s > 0.  Together with F(0+) = 0 one now hasb1 � b0 F �(s) � 1

  Therefore,  for all r > 0.   φ�1
µ1

φµ1
(s) � F(s) � s for all s > 0. φµ1

� φµ0
and a1(r) � a0(r)

Finally, µ1 = µ0 by the uniqueness of the Laplace transform.

3. (Continuity)   One can show that for any {ψi} and ψ* in Ψ, if ψi � ψ* as i � �, then

  First, note that with the given assumptions Ψ � P x M is complete.  P isfψi
k,δ,�z(t)� � fψ

�

k,δ,�z(t)� .

complete because the intervals in which the components of π are located are closed and finite.  M is

complete because uniform integrability rules out limit measures which have total measure or mean not

equal to one.
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Assume that , i.e., the limit as , where .  Now examine ψi � ψ
�

i � � of d(ψi,ψ�
) � 0 ψi � (πi,µi)

(5.9)

� fψi
k,δ,�z(t)� � fψ

�

k,δ,�z(t)� �

� m �z(t)� c δ � �z(t)� � �
�

0

gπi
k � δ,�z(t)� dµi(θ) � �

�

0

gπ
�

k � δ,�z(t)� dµ
�
(θ) �

	 m �z(t)� c δ � �z(t)� �
�

0

� gπi
k � δ,�z(t)� � gπ

�

k � δ,�z(t)� � dµi(θ)

� m �z(t)� c δ � �z(t)� � �
�

0

gπ
�

k � δ,�z(t)� dµi(θ) � �
�

0

gπ
�

k � δ,�z(t)� dµ
�
(θ) � .

Since the components of β and γ lie in finite intervals, one can show that gπ(k|δ,{z(t)}) is jointly

uniformly continuous in β, γ, and θ.  Therefore, for each � > 0, there exists an I(k,{z(t)}) such that if i >

I(k,{z(t)}), then 

� gπi
k � δ,�z(t)� � gπ

�

k � δ,�z(t)� � < � .



29

     19See Billingsley [1979, p. 288].

Consequently, the first term on the right-hand side of (5.9) is bounded above by �m({z(t)})c(δ|{z(t)}) for

large i.  The second term also vanishes as i � �, by a fundamental theorem of measure theory19 which

states that if µi � µ* weakly and g is bounded and continuous, then .
gdµi � 
gdµ
�

4. (Measurability)   For any ψ � P x M = Ψ and any ρ > 0, wψ(k,δ,{z(t)};ρ) must be a measurable

function of (k,δ,{z(t)}) where

w k,δ,�z(t)�;ρ � sup
ψ�:d(ψ,ψ�)<ρ

fψ� k,δ,�z(t)� .

N is separable implying that there exists a countable dense subset .Ψ� of Ψ

Now

sup
ψ�:d(ψ,ψ�)<ρ

fψ� k,δ,{z(t)} � sup
ψ��:d(ψ,ψ��)<ρ,

ψ��εΨ�

fψ�� k,δ,{z(t)} ,

so that wψ(k,δ,{z(t)};ρ) is the supremum of a countable sequence of measurable functions and must also

be measurable.  The countable dense subset  can be taken to be  is all (T+p) tuplesΨ� P � × M � where P �

with rational coordinates.   is all distributions with finitely many points of increase with these pointsM �

and the values of the distribution function taking rational values.

5. (Integrability)   It is required that for any ν � N,
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lim
ρ�0� Eψ0

ln
sup

ψ�:d(ψ,ψ�)<ρ
fψ� k,δ,{z(t)}

fψ0
k,δ,{z(t)}

�

< � .

But for some  � Ψ(π̃,µ̃)

Eψ0
ln sup

ψ�:d(ψ,ψ�)<ρ
fψ0

k,δ,{z(t)} � ln fψ0
k,δ,{z(t)} �

� Eψ0
ln m z(t) � ln c δ�{z(t)} � ln�

�

0

gπ̃ k�δ,{z(t)},θ dµ̃(θ)

� ln m {z(t)} � ln c δ�{z(t)} � ln�
�

0

gπ0
k�δ,{z(t)},θ dµ0(θ)

�

	 Eψ0
� ln�

�

0

gπ0
k�δ,{z(t)},θ dµ0(θ) <� by assumption .

Comments on the Assumptions:

The theorem holds for a more general proportional hazards model.  Let λi(t) � θiλo(t)ω zi(t)
�β

where ω is a known continuous and strictly increasing function and  is continuous.  Also assume thatω�

ω(x) � 0 as x � -�, and ω(x) � � as x � �.  Then the conclusions of Proposition 2 hold.

Assumptions (A) and (B) of Proposition 2 are also used by Heckman and Singer.  A simple

example of a family of distributions satisfying (A) is one such that with probability one 0 < � < θ < ∆ < �

uniformly for all elements of the family.  Heckman and Singer also consider an alternative assumption to
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     20See Kalbfleisch and Prentice (1980), pp. 30-32.

(A) which restricts the tail behavior of lnθ.  This approach requires quite lengthy proofs which are

avoided here with some loss of generality.  Cosslett [1983] and many others make assumptions analogous

to (B).  Assumption (B) is likely much stronger than needed.  Intuitively, variation in the covariates

besides the jth and for k�2 is useful in identifying the parameters.  Variation in the covariates over time

also seems likely to be useful.  Assumption (C) is the standard maximum likelihood regularity condition

that the likelihood cannot equal negative infinity at the true parameter values.

6.  A Reformulation of the Estimation Problem and a New Approach

A hazard model is equivalent to the nonlinear model

(6.1) �

Ti

0

λi(u)du � εi

where  is unit exponentially distributed.20  Using the parameterization of the hazard given above,εi

 (6.1) can be rewritten asλi(t) � θiλ0(t)ψ(zi(t)
�β),

.(6.2) �

Ti

0

θiλ0(u)ψ(zi(u)�β)du � εi

Dividing both sides by  and assuming  > 0, we haveθiλ0(0) θi

, where(6.3) �

Ti

0

λ�0(u)ψ(zi(u)�β)du � ηi
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,  ,  and .  ηi �
εi

θiλ0(1)
λ�0(u) � λ0(1)�1λ0(u) λ�0(1)�1

Equation (3) can be used to understand several different estimation strategies.  If the distribution of  isη

taken to be completely unrestricted, this model is even more general than a proportional hazards model. 

The approaches of Heckman and Singer (1984) and Section 5 can be thought of as estimating η

restricting it to be a mixture of exponentials.  If subjects are continuously observed so that exact failure

times are known, then (3) may be estimable without imposing any distribution assumptions on  usingη

the Kaplan-Meier product-limit estimator for the distribution of  in a way analogous to Horowitzη

(1987).  

Alternatively, if one only observes subjects at discrete times, then following the approach used

throughout the paper, one can write the probability of Ti being in a given time interval as 

(6.4) P [t	Ti<t�1] �

P [�
t

0

λ�0(u)ψ(zi(u)�β)du 	 ηi < �
t�1

0

λ�0(u)ψ(zi(u)�β)du] .

The likelihood of the data can be written as a function of terms of the form (6.4) and terms of the form

(6.5) P [t	Ti ] � P [�
t

0

λ�0(u)ψ(zi(u)�β)du 	 ηi ] ,

for the case where Ti is right censored.  These expressions combined with the cumulative distribution

function for  give a likelihood function that can be maximized as a function of .  One alternativeη β

would be to estimate the distribution of  using a flexible family of distributions.  Here I describe theη
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maximum likelihood estimate of the cumulative distribution function of , , conditional on .  Toη F(η) β

estimate  will require iterating between estimates of F and .β β

Turnbull (1974, 1976) provides an algorithm to obtain the maximum-likelihood estimate of the

distribution function characterizing a random sample of observations indexed by i=1, . . . ,N for the case

where we only observes the left and right endpoints, Li and Ri, of the interval in which the ith observation

lies.  The algorithm uses the idea of self-consistency.  Turnbull shows that the estimate satisfying the

self-consistency criteria is the maximum-likelihood estimate.

In our case,

 (6.6) Li �
�
ki�1

t�0
α(t)ψ(zi(t)

�β) for ki�1

0 for ki�0

and

 (6.7) Ri �
�
ki

t�0
α(t)ψ(zi(t)

�β) for δi�1

� for δi�0 ,

where .  To calculate the distribution function, define the set of disjoint intervals      [q1, p1],α(t) � e γ(t)

[q2, p2], . . . ,[qm, pm], where qj is an element of the set of left endpoints {Li} and pj is an element of the set

of right endpoints {Ri}, and [qj, pj] does not include any other element of {Li} or {Ri} except at the

endpoints.  Also define .  It can be shown that the maximum likelihood estimate of F, theC � �
m

j�1
[qj , pj]
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cumulative distribution of , is constant outside of C and is independent of the behavior of F within eachη

interval [qj, pj].  Turnbull's algorithm consists of iterating between two steps until the estimates converge. 

Let sj be the probability we assign to  lying in the interval [qj, pj], and let =1 if [qj, pj] is contained inη αij

[Li, Ri], and 0 otherwise.  The first step is to calculate the predicted probability that the ith observation

lies in the jth interval   [qj, pj].  This probability will be zero for all intervals which are not within [Li, Ri]. 

The form of the predicted probability is just 

, (6.8) µi j(s) �

αi j sj

�
m

k�1
αik sk

where s=(s1, s2, . . . ,sm).  

The second step is to obtain an estimate of the probability mass in the jth interval by summing over all

observations i the predictions of being in interval j from (6.8), i.e.

.  (6.9) πj(s)��
N

i�1
µi j(s)

One iterates between these two steps until sj = (s1, s2, . . . ,sm).  The initial estimates of sj can be taken toπj

be 1/m for all j.

To implement this approach, one needs to assign values for  over (pj, qj).  A simple approachF(η)

is to linearly interpolate between F(pj) and F(qj).  This solution yields a likelihood function that is

continuous and differentiable in  given F.  It will also likely be more convenient to use theβ

normalization (0)=1, rather than .α λ0(1)�1

[Simulations of this approach are underway.]
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7.  Testing

Coefficient estimates from the Prentice and Gloeckler approach can be used to test assumptions

about the shape of the baseline hazard.  Two approaches can be taken.  One can use conventional

nonlinear hypothesis testing on the estimated γ.  Alternatively, one can test using π � (β,γ) following the

specification test approach of Hausman [1978].  This second approach can be used in more situations.

The nonlinear hypothesis testing approach is easily described in the Weibull case.  Let the null

hypothesis be that the baseline hazard has the Weibull form, i.e., λo(t) = νφtφ-1.  Now consider

R(t) �

log �
t�1

j�0
exp{γj} � log �

t

j�0
exp{γj}

log(t�1) � log(t)
t�1,...,T�1

�
log ν(t�1)φ � log νt φ

log(t�1) � log(t)

� φ under Ho .       

Let R �

R(2) � R(1)
R(3) � R(2)

�

R(T�1) � R(T�2)

.

Then R̂ � 
R̂

γ�

Var(γ̂) 
R̂

γ

�1

R̂ �
a
χ2

T�2

under the null hypothesis that the baseline hazard is Weibull.

Alternatively, the Hausman [1978] approach can be used to compare the estimates of π from the

semiparametric method to those from maximum likelihood with the baseline hazard restricted to a given
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functional form.  Under the null hypothesis that the functional form is correct, both estimators are

consistent.  Under the alternative, only the semiparametric estimates are consistent and the two sets of

estimates will diverge.  A specification test determines whether the differences between the two

estimates are significant.  Let  denote the estimates of π from the semiparametric approachπ̂N and π̂M

and Maximum Likelihood, respectively.  Then

π̂N � π̂M
� Var π̂N � Var π̂M

�1 π̂N � π̂M �
a
χ2

p�T

under the null hypothesis, where p is the dimension of β.  This approach may be preferred because there

may not be a simple set of restrictions available for the nonlinear hypothesis test.  Furthermore, it allows

one to examine if the differences between  are large in an economic sense.π̂N and π̂M

A specification test can be performed using a subset of the parameters rather than π � (γ,β).  β is

often easier to use than the entire vector π, because  are directly calculated byβ̂M and Var(β̂M)

maximization routines.  On the other hand, , where  are the parameters of the baselineγ̂M � γ(ζ̂M) ζ̂M

hazard.   must be calculated using a first order Taylor series approximation.  While  is more Var(ζ̂M) γ̂M

difficult to use, it may give a test with greater power than .β̂M

8.  Simulations to Assess Bias and Relative Efficiency of Parametric Models

Simulations are useful to further assess the magnitude of the bias, but possible efficiency gain,

from using a parametric baseline hazard.  To study the results under a large number of alternative
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assumptions, I examine the limiting distribution of the estimator as the sample size grows.  In particular, I

focus on the probability limit of the estimator and the asymptotic standard error of the estimator under

various assumptions.  Since the discretely observed hazard model is just a multinomial model many

aspects of this process are simplified.   The limiting parameter estimates are obtained as the solution to

the limiting first order conditions.  The asymptotic standard errors are obtained from the limiting

information matrix calculated as the limiting outer product of the gradients.  These expressions can be

written as functions of the T probabilities of being at risk at the beginning of an interval and the T

probabilities of a spell ending during an interval.

The procedure is to draw N observations on the covariates from a specified distribution.  In the

case of time-varying covariates, N paths of the variables must be chosen.  A shape must also be assumed

for the true baseline hazard.  Given this information and a censoring rule, the distribution of the observed

data from this true model is completely characterized by E[Di(t)] and E[Ri(t)], i=1,...,N.  E[Di(t)] is the

probability of a spell being observed ending in the tth interval, while E[Ri(t)] is the probability of a spell

lasting and being uncensored at the end of the tth interval.  The index i indicates that these probabilities

are conditional on the ith set of covariates.

Now, an assumed and estimated, but not necessarily true, model can be characterized by it survivor

function for a given set of covariates Si(t).  The resulting limiting log-likelihood can be written as

(8.1) E L � �
N

i�1
�

T

t�0
E Ri ( t�1) � E Ri ( t ) � E Di ( t ) log Si ( t�1) � E Di ( t ) log Si ( t�1) � Si ( t )

� �
N

i�1
�

T

t�0
E Ri ( t�1) � E Ri ( t ) � E Di ( t ) L1 i t � E Di ( t ) L2 i t
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where   E Di ( t ) � E Di t | zi (τ ) , E Ri ( t ) � E Ri t | zi (τ ) , L1 i t � log Si ( t�1)

  L2 i t � log Si ( t�1) � Si ( t ) , Ri (�1) � 1, Ri (T ) � 0, Di(T ) � 0,

L1 i0 � 0, L2 i 0 � log 1 � Si(0) .

The log-likelihood function in (8.1) is the sum over each of the N covariate paths of the expected

contribution to the likelihood conditional on that covariate path.  The parameter estimates obtained by

maximizing this function will be the probability limit of the estimator from a sequence of samples that

consist of a growing number of replications of these N values of covariates.  The information matrix is

calculated as the expected value of the outer product of the gradients.  The standard errors are the square

roots of the diagonal elements of the inverse of this expected information matrix.  For example the block

of the expected information matrix corresponding to β has the form

(8.2) E 
L

β


L

β�

� �
N

i�1
�
T�1

t�0
E Ri (t�1) � E Ri ( t ) � E Di ( t )


L1 i t


β

L1 i t


β�
� E Di ( t )


L2 i t


β

L2 i t


β�
.

The rest of the matrix is calculated analogously.  Note that this matrix only gives the inverse of the

asymptotic variances when the assumed model includes the true one as a special case.

In the case where we have no heterogeneity in the assumed model and 

λi(u) � λ0(u)exp{zi(u)�β}

the expected log-likelihood simplifies to

(8.3) ,E L (γ ,β ) � �
N

i�1
�
T�1

t�0
E Di ( t ) log 1�exp{�hi ( t )} � E Ri ( t ) hi ( t )

where .hi ( t ) � exp γ ( t ) � zi ( t ) �β

The first order conditions for maximization of the expected log-
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likelihood function are

E 
L

β

� �
N

i�1
�
T�1

t�0
E Di ( t ) zi ( t )

hi ( t )exp{�hi ( t )}
1�exp{�hi ( t )}

� E Ri ( t ) zi ( t )hi ( t ) � 0 .

,E 
L

γ ( t )

� �
N

i�1
�
T�1

t�0
E Di ( t )

hi ( t )exp{�hi ( t )}
1�exp{�hi ( t )}

� E Ri ( t ) hi ( t ) � 0, ( t�0,1 , ... ,T�1) , and

where the derivatives for a parametric baseline can be written as function of .γ

The expected log-likelihood function and its derivatives are calculated in the same way when the

assumed model allows gamma heterogeneity, but the expressions are more complicated.  If the assumed

model has gamma heterogeneity then

L1 i t � log 1 � σ2�
t�1

τ�0
hi (τ )

�σ�2

.L2 i t � log 1 � σ2�
t�1

τ�0
hi (τ )

�σ�2

� 1 � σ2�
t

τ�0
hi (τ )

�σ�2

In the simulations with heterogeneity in the true model, I generate the expected survivor function

for a large number M draws from a heterogeneity distribution for a given set of covariates.  Average the

survivor function over these draws.  Repeat this for each of the N paths of the covariates.

When the true model has unobserved heterogeneity the log-likelihood functions, first order conditions

and expected information matrices are as above except now
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E Di ( t ) � M �1�
M

j�1
E Di t | zi (τ ) , θj

E Ri ( t ) � M �1�
M

j�1
E Ri t | zi (τ ) , θj

where θ1,..., θM are independent draws from the true heterogeneity distribution. 
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RESULTS OF THE SIMULATIONS

Table 1 provides a summary of some of the details of the simulations to assess the bias or

efficiency of different estimators under various assumptions.  In all of the simulations I assume that

observations are only observed for 20 periods, so that ongoing spells are censored at that point.  I use 100

values of the 3 covariates and all true coefficients are set equal to one.  When there is unobserved

heterogeneity in the model I draw 1000 values from the heterogeneity distribution for each set of

covariates.  The results are reported in Table 2.

EFFICIENCY COMPARISONS

These simulations compare the limiting standard errors of a parametric true model to those from

the Prentice-Gloeckler approach.  I try simulations both with and without unobserved heterogeneity and I

distinguish between the coefficients on time constant and on time-varying covariates.  The simulations

without unobserved heterogeneity are numbered 2, 5, 11, 14, 28 and 31.  In all cases you should compare

the standard errors from these simulations to those from the immediately preceding simulation.  The

simulations with unobserved heterogeneity are numbered 20, 37, 39 and 41.  Again, the standard errors

should be compared to the preceding simulation (except 20 should be compared with 16).  These results

that for the time-constant covariates the efficiency loss is never substantial.  For the time-varying

covariates, the efficiency loss is sometimes substantial, though never extreme.  This difference between

time-constant and time-varying covariates was predicted by the analytical results of Section 3.

BIAS
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The simulations focus on bias due to misspecifying the baseline hazard or the heterogeneity

distribution.  The results distinguish between biases in coefficients and in derivatives and between the

coefficients on time-constant and time-varying covariates.  The simulations which illustrate the biases

due to misspecifying the baseline hazard are numbered 3, 6, 8, 9, 12, 15, 29, 32, 34, and 35.  A consistent

estimator of these coefficients is provided in the preceding simulation, or in some cases, the simulation

two earlier.  The simulations show that misspecifying the baseline hazard can lead to large biases in

coefficients and derivatives of mean spell length with respect to the covariates.  The possibility of

extreme bias appears to be much greater for time-varying covariates.  Examples of such biases can be

seen in simulations 3 and 9 and to a lesser extent 12.  The time-varying covariates are not always more

biased though (see simulation 15).  While a likely greater bias in time-varying covariate coefficients was

not shown analytically earlier, it is quite intuitive.  If the time pattern of the hazard is misspecified, it

seems more likely to bias coefficients on variables that may have a time trend themselves.  

The biases in the derivatives of mean duration are usually qualitatively similar to the biases in the

coefficients, though not always.  When one parameter is badly biased the derivatives for others are

sometimes not approximately biased by the same proportion as the coefficients.

It is worth noting, that the case of a Weibull baseline and Gamma heterogeneity is special.  Lancaster

(1985) shows that derivatives of the logarithm of duration in a continuous model with no censoring are

unbiased when heterogeneity is ignored or misspecified.  Simulation 17

shows that this result is not even approximately true under the somewhat different assumptions here.  In

these simulations we examine duration not its logarithm, as well as a discrete model with censoring.  I

should also note that a misspecified baseline hazard may cause one to think there is no unobserved

heterogeneity when in fact it is present (simulation 18).

The simulations also give some evidence on the biases due to not allowing for unobserved

heterogeneity or misspecifying its distribution.  Simulations 17 and 21 show substantial biases when
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unobserved heterogeneity was ignored (compare to simulation 16).  However, simulations 22, 25, and 26

suggest that the choice of heterogeneity distribution used in the estimated model may not be crucial. 

These simulations show that a gamma distribution does quite well when the true distribution is

multinomial, uniform or an exponentiated normal.

9.  Conclusions

This paper describes an estimator for the proportional hazards model which allows an unknown

form for the baseline hazard.  The estimator avoids inconsistent estimation due to misspecification of the

baseline hazard.  Several kinds of censoring are allowed and discrete data of the form usually found in

economics is used.  Analytical expression indicate that the approach appears has a high efficiency

relative to fully parametric models in many cases.  The model readily allows for parametric unobserved

heterogeneity.  The paper also shows that one can consistently estimate the parameters of the model even

when both the baseline hazard and the heterogeneity distribution are unknown.  The paper describes a

reformulation of the estimation problem and a tractable algorithm for calculating the maximum

likelihood estimates.  Simulations support the analytical result of high efficiency.  The simulations also

indicate the biases that can occur due to misspecification of the baseline hazard.  
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Table 1
True and Estimated Models Used in Simulations

                                                                             

20 time periods, 100 paths of 3 covariates (2 time-constant, 1 time-varying)

Coefficient on zi, �i=1, i=1,2,3.

Heterogeneity simulated with 1000 values for each set of covariates
                        
True models  

Baseline Hazards (BL) 

Weibull: weibull �=.1 p=1.2, �(t)=�p(�t)p-1 
Log-logistic: log-logistic �=.12 p=2.5, �(t)=�p(�t)p-1/(1+(�t)p) 

  (non-monotone)
Piece-wise: piece-wise constant �(t)= .08 for t=1,2,...,7, 

  .16 for t=8,9,...,13, 
  .08 for t=14,15,...,20

Covariates

z1=ln(Gamma �
2=.2) 

z2=Normal �
2=.250

z3 Trending up: z3(t)=ln(Uniform(.5,1.5)+t**.2), uniform iid over t
z3 Trending down: z3(t)=ln(Uniform(.5,1.5)+t**-.2), uniform iid over t
z3 Trending up, same: z3(t)=ln(Uniform(.5,1.5)+t**.2), uniform the same 

   each t

Unobserved Heterogeneity (UH)

None: degenerate
Gamma: gamma �2=.2 
Multinomial: support at .3, .5 and 1.4, with probabilities .2, .2, 

 and .6 respectively
Uniform: uniform (.4,1.6)
Exp(Normal): exp(Normal �2=1/9)
Gamma �2=1/3: gamma �2=1/3
Exp(Normal �2=.25): exp(Normal �2=.25)
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Table 2
Limiting Standard Errors and Solutions to First Order Conditions                                                                             

                                                                     Average  
    True model             Estimated model         Estimate   S.E.  derivative

1.  BL: Weibull            True model             �1  1.000   .237   -4.596
    z3 trending up                                �2  1.000   .241   -4.596
    UH: none                                      �3  1.000   .503   -4.596 
2.  Same    BL: Prentice-Gloeckler �1  1.000   .238   -4.596

  �2  1.000   .242   -4.596
  �3  1.000   .507   -4.596

3.  Same        BL: Log-logistic    �1   .937          -4.457
  �2   .941          -4.478
  �3  1.422          -6.781

4.  BL: Log-logistic    True model   �1  1.000   .236   -4.070
    z3 trending up   �2  1.000   .240   -4.070
    UH: none   �3  1.000   .469   -4.070
5.  Same    BL: Prentice-Gloeckler �1  1.000   .238   -4.070

  �2  1.000   .242   -4.070
  �3  1.000   .547   -4.070

6.  Same    BL: Weibull   �1  1.050          -4.231
  �2  1.057          -4.258
  �3   .971    -3.911

7.  BL: Piecewise    BL: Prentice-Gloeckler �1  1.000   .241   -4.580
    z3 trending up   �2  1.000   .244   -4.580
    UH: None   �3  1.000   .506   -4.580
8.  Same    BL: Weibull   �1   .978          -4.614

  �2   .983          -4.638
  �3  1.040          -4.908

9.  Same    BL: Log-logistic   �1   .921          -4.492
  �2   .930          -4.535
  �3  1.457          -7.109

10. BL: Weibull    True Model             �1  1.000   .265   -5.171
    z3 trending down                       �2  1.000   .267   -5.171
    UH: None   �3  1.000   .302   -5.171
11. Same           BL: Prentice-Gloeckler �1  1.000   .266   -5.171
                          �2  1.000   .268   -5.171

                  �3  1.000   .303   -5.171
12. Same    BL: Log-logistic       �1   .955    -5.039

              �2   .957    -5.049
  �3   .874    -4.614

13. BL: Log-logistic    True Model             �1  1.000   .265   -4.643
    z3 trending down              �2  1.000   .269   -4.643
    UH: None   �3  1.000   .285   -4.643
14. Same                   BL: Prentice-Gloeckler �1  1.000   .266   -4.643
                    �2  1.000   .270   -4.643
                     �3  1.000   .294   -4.643
15. Same              BL: Weibull   �1  1.037    -4.746
                           �2  1.043    -4.775
                     �3  1.004    -4.598
                                                                            

(continued)
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Table 2 continued
                                                                     Average  
    True model             Estimated model         Estimate   S.E.  derivative
                                                                            
16. BL: Weibull            True model   �1   .999   .315   -4.506
    z3 trending up   �2   .999   .317   -4.506
    UH: Gamma   �3  1.000   .521   -4.510
16. BL: Weibull            True model   �1   .999   .315   -4.506
    z3 trending up   �2   .999   .317   -4.506
    UH: Gamma   �3  1.000   .521   -4.510
17. Same    BL: Weibull   �1   .885    -4.442

   UH: None   �2   .887    -4.456
  �3   .974    -4.889

18. Same    BL: Log-logistic     would not converge,
   UH: Gamma   tended towards �2=0

19. Same    BL: Log-logistic   �1  .847    -4.331
   UH: None   �2   .853    -4.360

  �3  1.253    -6.406
20. Same    BL: Prentice-Gloeckler �1   .998   .357   -4.505

   UH: Gamma   �2   .998   .356   -4.506
  �3  1.000   .524   -4.513

21. Same    BL: Prentice-Gloeckler �1   .876    -4.411
   UH: None   �2   .879    -4.426

  �3   .996          -5.018
22. BL: Weibull    UH: Gamma   �1   .996     -4.493
    z3 trending up        �2   .996    -4.493
    UH: Multinomial   �3   .999    -4.507
23. Same    BL: Prentice-Gloeckler �1   .995    -4.491

   UH: Gamma   �2   .995    -4.491
  �3  1.000    -4.515

24. Same    BL: Prentice-Gloeckler �1   .979    -4.473
   UH: None   �2   .979    -4.474

  �3  1.000    -4.570
25. BL: Weibull            BL: Weibull   �1  1.003    -4.512
    z3 trending up    UH: Gamma   �2  1.003    -4.511
    UH: Uniform   �3  1.001    -4.504
26. BL: Weibull    BL: Weibull   �1   .995    -4.561
    z3 trending up    UH: Gamma   �2   .996    -4.562
    UH: Exp(Normal)   �3   .999    -4.575
27. BL: Weibull    True Model   �1  1.000   .238   -4.621
    z3 trending up, same    �2  1.000   .252   -4.621
    UH: None            �3  1.000   .505   -4.621
28. Same    BL: Prentice-Gloeckler �1  1.000   .240   -4.621

              �2  1.000   .252   -4.621
  �3  1.000   .506   -4.621

29. Same    BL: Log-logistic       �1   .945    -4.480
                 �2  1.001    -4.746

  �3  1.376    -6.519
30. BL: Log-logistic       True Model   �1  1.000   .238   -4.090
    z3 trending up, same   �2  1.000   .253   -4.090
    UH: None     �3  1.000   .484   -4.090
                                                                            

(continued)
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Table 2 continued
                                                                     Average  
    True model             Estimated model         Estimate   S.E.  derivative
                                                                            
31. Same          BL: Prentice-Gloeckler �1  1.000   .239   -4.090
                                          �2  1.000   .253   -4.090
                        �3  1.000   .540   -4.090
32. Same    BL: Weibull            �1  1.061        -4.296

                 �2  1.054    -4.267
  �3  1.008    -4.080

33. BL: Piece-wise         BL: Prentice-Gloeckler �1  1.000          -5.177
    z3 trending up, same   �2  1.000          -5.177
    UH: None     �3  1.000          -5.177

34. Same          BL: Weibull            �1   .983          -5.141
                                          �2   .999          -5.228
                        �3   .999          -5.225
35. Same    BL: Log-logistic       �1   .947        -5.024

                 �2   .963    -5.113
  �3   .887    -4.708

36. BL: Weibull            True Model   �1  1.003   .340   -4.384
    z3 trending up   �2  1.003   .343   -4.383
    UH: Gamma �2=1/3   �3  1.001   .529   -4.374
37. Same          BL: Prentice-Gloeckler �1  1.005   .387   -4.384
                                          �2  1.005   .386   -4.383
                        �3  1.001   .532   -4.364
38. BL: Weibull            True Model   �1  1.002   .390   -4.682
    z3 trending down   �2  1.002   .389   -4.682
    UH: Gamma �2=1/3   �3  1.000   .318   -4.672
39. Same          BL: Prentice-Gloeckler �1  1.003   .420   -4.683
                                          �2  1.003   .416   -4.682
                      �3  1.000   .319   -4.669
40. BL: Weibull            True Model   �1  1.004   .342   -4.405
    z3 trending up, same   �2  1.003   .361   -4.405
    UH: Gamma �2=1/3   �3  1.004   .662   -4.410
41. Same          BL: Prentice-Gloeckler �1  1.005   .390   -4.406
                                          �2  1.005   .402   -4.405
                        �3  1.006   .677   -4.407
                                                                            


