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POLITICAL ECONOMY OF REDISTRIBUTION

BY DANIEL DIERMEIER, GEORGY EGOROV, AND KONSTANTIN SONIN1

It is often argued that additional constraints on redistribution such as granting veto
power to more players in society better protects property from expropriation. We use
a model of multilateral bargaining to demonstrate that this intuition may be flawed.
Increasing the number of veto players or raising the supermajority requirement for
redistribution may reduce protection on the equilibrium path. The reason is the ex-
istence of two distinct mechanisms of property protection. One is formal constraints
that allow individuals or groups to block any redistribution that is not in their favor.
The other occurs in equilibrium where players without such powers protect each other
from redistribution. Players without formal veto power anticipate that the expropria-
tion of other similar players will ultimately hurt them and thus combine their influence
to prevent redistributions. In a stable allocation, the society exhibits a “class” structure
with class members having equal wealth and strategically protecting each other from
redistribution.

KEYWORDS: Political economy, legislative bargaining, property rights, institutions.

1. INTRODUCTION

ECONOMISTS HAVE LONG VIEWED PROTECTION OF PROPERTY RIGHTS as a cornerstone
of efficiency and economic development (e.g., Coase (1937), Alchian (1965), Hart and
Moore (1990)). Yet, from a political economy perspective, property rights should be un-
derstood as equilibrium outcomes rather than exogenous constraints. Legislators or, more
generally, any political actors cannot commit to entitlements, prerogatives, and rights.
Whether property rights are effectively protected depends on the political economy of
the respective society and its institutions. The idea that granting veto power to different
actors in the society enhances protection dates back at least to the Roman republic (Poly-
bius [2010], Machiavelli 1515[1984]) and, in modern times, to Montesquieu’s Spirit of the
Laws (1748[1989]) and the Federalist papers, the intellectual foundation of the United
States Constitution. In essay number 51, James Madison argued for the need to contrive
the government “as that its several constituent parts may, by their mutual relations, be the
means of keeping each other in their proper places.” Riker (1987) concurs: “For those
who believe, with Madison, that freedom depends on countering ambition with ambition,
this constancy of federal conflict is a fundamental protection of freedom.”

In modern political economy, an increased number of veto players has been associ-
ated with beneficial consequences. North and Weingast (1989) argued that the British
parliament, empowered at the expense of the crown by the Glorious Revolution in 1688,
provided “the credible commitment by the government to honour its financial agreement
[that] was part of a larger commitment to secure private rights.” Root (1989) demon-
strated that this allowed British monarchs to have lower borrowing costs compared to the
French kings. In Persson, Roland, and Tabellini (2000), separation of taxing and spend-
ing decisions within budgetary decision-makings improves the accountability of elected
officials and limits rent-seeking by politicians.

We study political mechanisms that ensure protection against expropriation by a ma-
jority. In practice, institutions come in different forms such as the separation of powers

1We are grateful to seminar participants at Princeton, Rochester, Piraeus, Moscow, Frankfurt, Mannheim,
Northwestern, the University of Chicago, participants of the MACIE Conference in Marburg and the CIFAR
Meeting in Toronto, four referees, and the editor for the very valuable comments. The paper was previously
circulated under the title “Endogenous Property Rights.”
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between the legislative, executive, and judicial branches of government, multicameralism,
federalism, supermajority requirements, and other constitutional arrangements that ef-
fectively provide some players with veto power. One of the first examples was described by
Plutarch [2010]: the Spartan Gerousia, the Council of Elders, could veto motions passed
by the Apella, the citizens’ assembly. In other polities, it might be just individuals with
guns who have effective veto power. Essentially, all these institutions allow individuals or
collective actors to block any redistribution without their consent. If we interpret prop-
erty rights as institutions that allow holders to prevent reallocations without their consent,
then we can formally investigate the effect of veto power on the allocation of property.

In addition to property rights, formalized in constitutions or codes of law, that is, game
forms in a theoretical model, property rights might be protected as equilibrium outcomes
of interaction of strategic economic agents. The property rights of an individual may be
respected not because he is powerful enough to protect them on his own, that is, has
veto power, but because others find it in their respective interest to protect his rights.
Specifically, members of a coalition, formed in equilibrium, have an incentive to oppose
the expropriation of each other because they know that once a member of the group is
expropriated, others will be expropriated as well. As a result, the current allocation of
assets might be secure even in the absence of explicit veto power.

If property rights may emerge from strategic behavior of rational economic agents, such
rights are necessarily dynamic in nature. A status quo allocation of assets stays in place for
the next period, unless it is changed by the political decision mechanism in which case the
newly chosen allocation becomes the status quo for the next period. This makes models
of legislative bargaining with the endogenous status quo (following Baron (1996) and Ka-
landrakis (2004) the natural foundation for studying political economy of redistribution
and protection of property from expropriation.2

In our model, agents, some of whom have veto power, decide on allocation of a finite
number of units. If the (super)majority decides on redistribution, the new allocation be-
comes the status quo for the next period. We start by showing that non-veto players build
coalitions to protect each other against redistribution. Diermeier and Fong (2011) demon-
strated that with a sole agenda-setter, two other players could form a coalition to protect
each other from expropriation by the agenda-setter. However, this feature is much more
general: our Propositions 1–3 show that such coalitions form in a general multilateral set-
ting with any number of veto players. The size of a protective coalition is a function of the
supermajority requirement and the number of veto players. Example 1 demonstrates that
with five players, one of whom has veto power, three non-veto players with equal wealth
form a coalition to protect each other.

EXAMPLE 1: Consider five players who decide how to split ten indivisible units of
wealth, with the status quo being (1�2�3�4;0). Player #5 is the sole veto player and
proposer, any reallocation requires a majority of votes, and we assume that when play-
ers are indifferent, they support the proposer. In a standard legislative bargaining model,
the game ends when a proposal is accepted. Then player #5 would simply build a coali-
tion to expropriate two players, say #3 and #4, and capture the surplus resulting in
(1�2�0�0;7). However, this logic does not hold in a dynamic model where the agreed

2Recent contributions to this literature include Anesi and Seidmann (2014, 2015), Anesi and Duggan (2015,
2017), Baron and Bowen (2015), Bowen and Zahran (2012), Diermeier and Fong (2011, 2012), Duggan and
Kalandrakis (2012), Kalandrakis (2010), Richter (2014), Vartiainen (2014), and Nunnari (2016). We discuss
the existing literature and its relationship to our results in Section 5.
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upon allocation can be redistributed in the subsequent periods. That is, with the new
status quo (1�2�0�0;7), player #5 would propose to expropriate players #1 and #2 by
moving to (0�0�0�0;10), which is accepted in equilibrium. Anticipating this, players #1
and #2 should not agree to the first expropriation, thus becoming the effective guarantors
of property rights of players #3 and #4. Starting with (1�2�3�4;0), the ultimate equilib-
rium allocation might be either (3�3�3�0;1) or (2�2�2�0;4) or (2�2�0�2;4); in any of
the cases, at least three players will not be worse off. In general, an allocation is stable if
and only if there is a group of three non-veto players of equal wealth, and the remaining
non-veto player has an allocation of zero.

The fact that all non-veto players who are not expropriated in Example 1 have the same
wealth in the ultimate stable allocation is not accidental. With a single proposer, we can-
not isolate the impact of veto power from the impact of agenda-setting power; non-veto
players have no chance to be agenda-setters, and their action space is very limited. With
multiple veto players and multiple agenda-setters without veto power, we demonstrate
that the endogenous veto groups have a certain “class structure”: in a stable allocation,
most of the non-veto players are subdivided into groups of equal size, within each of which
individual players have the same amount of wealth, whereas the rest of the society is fully
expropriated. While we make specific assumptions to single out equilibria to focus on, the
“class structure” is robust (see Section 5 for the discussion).

EXAMPLE 2: Consider the economy as in Example 1, yet four votes, rather than three,
are required to change the status quo. Now, if the initial status quo is (1�2�3�4;0), which
is unstable, the ultimate stable allocation will be (1�3�3�1;2), that is, two endogenous
veto groups will be formed (players #1 and #4 form one, and #2 and #3 form the other).
In general, with five players—one veto player and four votes required to change the status
quo—all stable sets are of the form, up to permutations, (x1�x2�x3�x4;x5) with x1 = x2

and x3 = x4. This is the simplest example of a society exhibiting a nontrivial class structure.

The number and size of these endogenous classes vary as a function of the number
of veto players and the supermajority requirements. Perhaps paradoxically, adding ad-
ditional exogenous protection (e.g., by increasing the number of veto players) may lead
to the breakdown of an equilibrium with stable property rights, as the newly empowered
player (the one who was granted or has acquired veto power) now no longer has an incen-
tive to protect the others. Thus, by adding additional hurdles to expropriation in the form
of veto players or supermajority requirements (see Example 4 below), the protection of
property rights may in fact be eroded. In other words, players’ property may be well pro-
tected in the absence of formal constraints, while strengthening formal constraints may
result in expropriation. Our next example demonstrates this effect more formally.

EXAMPLE 3: As in Example 1, there are five players and three votes are required to
make a change, but now there are two veto players instead of one, #4 and #5. Allocations
(x1�x2�x3;x4�x5), in which at least one of players #1, #2, or #3 has zero wealth and at
least one has a positive amount, are unstable, as the two veto players will obtain the
vote of one player an allocation of zero and redistribute the assets of the remaining two
players. One can prove that an allocation is stable if and only if x1 = x2 = x3 (up to a
permutation). This means that if we start with (3�3�3�0;1), which was stable with one
veto player, making player #1 an additional veto player will destroy stability. As a result,
the society will move either to an allocation in which all 10 units are split between the two
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veto players or to some allocation where the non-veto players form an endogenous veto
group that protects its members from further expropriation, for example, (4;1�1�1;3), in
which #2–4 form such group.

We see here an interesting phenomenon. The naive intuition would suggest that giv-
ing one extra player (player #1 in this example) veto power would make it more difficult
for player #5 to expropriate the rest of the group. However, the introduction of a new
veto player breaks the stable coalition of non-veto players and makes #5 more power-
ful. Before the change, non-veto players sustained an equal allocation, precisely because
they were more vulnerable individually. With only one veto player and an equal alloca-
tion for players #1, #2, and #3, the three non-veto players form an endogenous veto
group, which blocks any transition that hurts the group as a whole (or even one of them).
An additional veto player makes expropriation more, not less, likely. Note that both the
amount of wealth being redistributed and the number of players affected by expropriation
are significant. The number of players who stand to lose is two, close to half of the total
number of players, and at least 4 units, close to half of the total wealth, is redistributed
through voting. In Proposition 4, we show that the class structure, which is a function of
the number of veto players and the supermajority requirement, determines a limit to the
amount of wealth redistributed after an exogenous shock to one player’s wealth.

In addition to granting veto rights, changes to the decision-making rule (e.g., the degree
of supermajority) can also have a profound, yet somewhat unexpected effect on protec-
tion of property. Higher supermajority rules are usually considered safeguards that make
expropriation more difficult, as one would need to build a larger coalition. The next ex-
ample shows that this intuition is flawed as well: in a dynamic environment, increasing the
supermajority requirements may trigger additional redistribution.

EXAMPLE 4: As above, there are five players who make redistributive decisions by ma-
jority, and one of whom (#5) has veto power. Allocation (3�3�3�0;1) is stable. Now,
instead of a change in the number of veto players, consider a change in the superma-
jority requirements. If a new rule requires four votes, rather than three, the status quo
allocation becomes unstable. Instead, a transition to one of the allocations that become
stable, (3�3�0�0;4) or (4�4�0�0;2), will be supported by coalition of four players out of
five. (The veto player, #5, benefits from the move, #4 is indifferent as he gets 0 in both
allocations, and #1 and 2 will support this move as they realize that with the new super-
majority requirement they form a group that is sufficient to protect its members against
any expropriation.) Thus, an increase in supermajority may result in expropriation and
redistribution.

As Example 4 demonstrates, raising the supermajority requirement does not necessar-
ily strengthen property rights, as some players are expropriated as a result. Proposition 6
establishes that this phenomenon, as well as the one discussed in Example 3, is generic:
adding a veto player or raising the supermajority requirement almost always leads to a
wave of redistribution. To obtain the comparative statics results described in Examples 3
and 4 (Propositions 5 and 6), we use a general characterization of politically stable allo-
cations in a multilateral-negotiations settings (Proposition 3). These results contrast with
the existing consensus in the literature, summarized by Tsebelis (2002): “As the number
of veto players of a political system increase, policy stability increases.”

Redistribution through overtaxation (e.g., Persson and Tabellini (2000)) or an outright
expropriation (e.g., Acemoglu and Robinson (2006)) has been the focus of political econ-
omy studies since at least Machiavelli (1515)[1984] and Hobbes (1651)[1991]. A large
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number of works explored the relationship between a strong executive and his multi-
ple subjects (e.g., Greif (2006) on the institute of podesteria in medieval Italian cities;
Haber, Razo, and Maurer (2003) on the 19th century Mexican presidents; or Guriev and
Sonin (2009) on Russian oligarchs). Acemoglu, Robinson, and Verdier (2004) and Padro
i Miquel (2007) build formal divide-and-rule theories of expropriation, in each of which
a powerful executive exploited the existing cleavages for personal gain. In addition to
the multilateral bargaining literature, policy evolution with endogenous quo is studied,
among others, in Dixit, Grossman, and Gul (2000), Hassler, Storesletten, Mora, and Zili-
botti (2003), Dekel, Jackson, and Wolinsky (2009), Battaglini and Coate (2007, 2008), and
Battaglini and Palfrey (2012). To this diverse literature, our model adds the emergence of
“class politics”; also, we demonstrate that introduction of formal institutions of property
rights protection might result, in equilibrium, in less protection than before.

The remainder of the paper is organized as follows. Section 2 introduces our general
model. In Section 3, we establish the existence of (pure-strategy Markov perfect) equilib-
rium in a non-cooperative game and provide full characterization of stable wealth allo-
cations. Section 4 focuses on the impact of changes in the number of veto players or su-
permajority requirements. In Section 5, we discuss our modeling assumptions and robust-
ness of our results, while Section 6 concludes. The Supplemental Material (Diermeier,
Egorov, and Sonin (2017)) contains technical proofs and some additional examples and
counterexamples.

2. SETUP

Consider a set N of n = |N| political agents who allocate a set of indivisible identical
objects between themselves. In the beginning, there are b objects, and the set of feasible
allocations is therefore

A =
{
x ∈ (

N∪ {0})n :
n∑

i=1

xi ≤ b

}
�

We use lower index xi to denote the amount player i gets in allocation x ∈ A throughout
the paper, and we denote the total number of objects in allocation x by ‖x‖ = ∑

i∈N xi.
Time is discrete and indexed by t > 0, and the players have a common discount fac-

tor β. In each period t, the society inherits xt−1 from the previous period (x0 is given
exogenously) and determines xt through an agenda-setting and voting procedure. A tran-
sition from xt−1 to some alternative y ∈ A is feasible if ‖y‖ ≤ ‖xt−1‖; in other words, we
allow for the objects to be wasted, but not for the creation of new objects.3 For a feasible
alternative y to defeat the status quo xt−1 and become xt , it needs to gain the support of
a sufficiently large coalition of agents.

To define which coalitions are powerful enough to redistribute, we use the language of
winning coalitions. Let V ⊂N be a nonempty set of veto players (denote v = |V |; without
loss of generality, let us assume that V corresponds to the last v agents n− v + 1� � � � � n),
and let k ∈ [v�n] be a positive integer. A coalition X is winning if and only if (a) V ⊂ X
and (b) |X| ≥ k. The set of winning coalitions is denoted by

W = {
X ∈ 2N \ {∅} : V ⊂X and |X| ≥ k

}
�

3An earlier version of the model required that there is no waste, so ‖xt‖ = ‖x0‖ = b throughout the game,
and the results were identical. In principle, the possibility of waste can alter the set of outcomes in a legislative
bargaining model (e.g., Richter (2014)).
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In this case, we say that the society is governed by a k rule with veto players V , meaning
that a transition is successful if it is supported by at least k players and no veto player
opposes it. We will compare the results for different k and v. We maintain the assumption
that there is at least one veto player—that V is nonempty—throughout the paper; this
helps us capture various political institutions such as a supreme court. We do not require
that k > n/2, so we allow for minority rules. For example, a 1-rule with the set of veto
players {i} is a dictatorship of player i.

Our goal is to focus on redistribution from politically weak players to politically power-
ful ones, and especially on the limits to such redistribution. We thus introduce the follow-
ing assumption to enable veto players to buy the votes of those who would otherwise be in-
different. In each period, there is an arbitrarily small budget that the players can distribute
in this period; its default size is ε, and there is another ε for each unit transferred from
non-veto players to veto players. Furthermore, to avoid equilibria where non-veto play-
ers shuffle the units between themselves, we assume that there is a small transition cost
δ ∈ (0� ε) that is subtracted from the budget every time there is a transition.4 A feasible
proposal in period t is therefore a pair (y�ξ) such that y ∈ A that satisfies ‖y‖ ≤ ‖xt−1‖ and
ξi ∈ R

n satisfies ξi ≥ 0 for all i ∈ N and ‖ξi‖ ≤ (1+max(
∑

i∈V yi−
∑

i∈V x
t−1
i �0))×ε−I{y 	=

xt−1} × δ. Throughout the paper, we assume 0 < δ < ε < 1−β

b+1 . (We will show that as
ε�δ → 0, the equilibria converge to some equilibria of the game where ε = δ = 0; thus,
focusing on equilibria that may be approximated in this way may be thought of as equilib-
rium refinement that rules out uninteresting equilibria, specifically the ones that feature
cycles.5)

The timing of the game below uses the notion of a protocol, which might be any finite
sequence of players (possibly with repetition); for existence results, however, we require
it to end with a veto player.6 We denote the set of protocols by

Π =
∞⋃
η=1

{
π ∈ Nη : πη ∈ V

}
�

The protocol to be used is realized in the beginning of each period, taken from a distribu-
tion D that has full support on Π (to save on notation, we assume that each veto player
is equally likely to be the last one, but this assumption does not affect our results). If the
players fail to reach an agreement, the status quo prevails in the next period. Thus, in each
period t, each agent i gets instantaneous utility ut

i = xt
i + ξt

i and acts so as to maximize his
continuation utility

Ut
i = ut

i +E

∞∑
j=1

βju
t+j
i �

where the expectation is taken over the realizations of the protocols in the subsequent
periods. We focus on the case where the players are sufficiently forward looking; specifi-

4In most models of multilateral bargaining, it is standard to assume that whenever an agent is indifferent,
she agrees to the proposal (see Section 5). Otherwise, the proposer would offer an arbitrarily small amount to
an indifferent player. In our model, we assume indivisible units, but allow for such infinitesimal transfers.

5The working paper version Diermeier, Egorov, and Sonin (2013) contains a variant of such a game with
corresponding refinements.

6Allowing non-veto players to propose last may in some cases lead to nonexistence of protocol-free equilib-
ria as Example A2 in the Supplementary Material (Diermeier, Egorov, and Sonin (2017)) demonstrates.
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cally, we assume β> 1 − 1
b+2 .7 More precisely, the timing of the game in period t ≥ 1 is as

follows.
Stage 1. Protocol πt is drawn from the set of possible protocols Π.
Stage 2. For j = 1, player πt

j is recognized as an agenda-setter and proposes a feasible
pair (zj�χj), or passes.

Stage 3. If player πt
j passes, the game proceeds to Stage 5; otherwise, all players vote,

sequentially, in the order given by protocol πt , yes or no.
Stage 4. If the set of those who voted yes, Yj , is a winning coalition, that is, if Yj ∈W ,

then the new allocation is xt = zj , the transfers are ξt = χj , and the game proceeds to
Stage 6. Otherwise, the game proceeds to the next stage.

Stage 5. If j < |πt |, where |π| denotes the length of protocol π, then the game moves to
Stage 2 with j increased by 1. Otherwise, the society keeps the status allocation xt = xt−1,
and the game proceeds to the next stage.

Stage 6. Each player i receives an instantaneous payoff ut
i .

The equilibrium concept we use is Markov perfect equilibrium (MPE). In any such
equilibrium σ , the transition mapping φ = φσ : A × Π → A, which maps the previous
period’s allocation and the protocol realization for the current period into the current
period’s allocation, is well defined. In what follows, we focus on protocol-free equilibria
(protocol-free MPE8), namely, σ such that φσ(x�π) = φσ(x�π ′) for all x ∈ A and π�π ′ ∈
Π. We thus abuse notation and write φ =φσ : A → A to denote the transition mapping of
such equilibria.

3. ANALYSIS

Our strategy is as follows. We start by proving some basic results about equilibria of the
non-cooperative game described above. Then we characterize stable allocations, that is,
allocations with no redistribution, and demonstrate that the stable allocations correspond
to equilibria of the non-cooperative game. We then proceed to study comparative statics
with respect to the number of veto players, supermajority requirements, and equilibrium
paths that follow an exogenous shock to some players’ wealth.

3.1. Non-Cooperative Characterization

Consider a protocol-free MPE σ , and let φ = φσ be the transition mapping that is
generated by σ and defined at the end of Section 2. (Using transition mappings, rather
than individuals’ agenda-setting and voting strategies, allows us to capture equilibrium
paths in terms of allocations and transitions, i.e., in a more concise way). Iterating the
mapping φ gives a sequence of mappings φ�φ2�φ3� � � � : A → A, which must converge if
φ is acyclic. (Mapping φ is acyclic if x 	= φ(x) implies x 	= φτ(x) for any τ > 1; we will
show that every MPE satisfies this property.) Denote this limit by φ∞, which is simply
φτ for some τ as the set A is finite. We say that mapping φ is one-step if φ = φ∞ (this is
equivalent to φ = φ2), and we call an MPE σ simple if φσ is one-step. Given an MPE σ ,
we call allocation x stable if φσ(x) = x. Naturally, φ∞

σ maps any allocation into a stable
allocation.

Our first result deals with the existence of an equilibrium and its basic properties.

7This condition means that a player prefers x + 1 units tomorrow to x units today, for any x ≤ b + 1. This
assumption is relatively weak compared to models of multilateral bargaining that require β to approach 1.

8See Examples A4 and A5 in the Supplemental Material, where allowing for non-Markov strategies or
dropping the requirement that transitions be the same for every protocol can lead to counterintuitive equilibria.
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PROPOSITION 1: Suppose β> 1 − 1
b+2 , ε < 1−β

b
, and δ < ε

n
. Then the following statements

hold:
(i) There exists a protocol-free Markov perfect equilibrium σ .

(ii) Every protocol-free MPE is acyclic.
(iii) Every protocol-free MPE is simple.
(iv) Every protocol-free MPE is efficient in that it involves no waste (for any x ∈ A,

‖φ(x)‖ = ‖x‖).

These results are quite strong, and are made possible by the requirement that the equi-
librium be protocol-free. For a fixed protocol, equilibria might involve multiple itera-
tions before reaching a stable allocations (see Example A3 in the Supplemental Mate-
rial). However, these other equilibria critically depend on the protocol and are therefore
fragile; in contrast, transition mappings supported by protocol-free MPE are robust (e.g.,
they would remain if the protocols are taken from a different distribution, for example).

The proof of Proposition 1 is technically cumbersome and is relegated to the Supple-
mental Material. However, the idea is quite straightforward. We construct a candidate
transition mapping φσ that we want to be implemented in the equilibrium. If the society
starts the period in state x = xt−1 such that φ(x) = x, we verify that it is a best response
for the veto players to block any transitions except for those that are blocked by a coalition
of non-veto players and, thus, x remains intact. If the society starts the period in state x
such that φ(x) 	= x, we verify that there is a feasible vector of small transfers that may be
redistributed from those who strictly benefit from such transition to those who are indif-
ferent, and that the society would be able to agree on such a vector over the course of the
protocol. The second result, the acyclicity of MPE, relies on the presence of transaction
costs, which rules out the possibility of non-veto players shuffling units among themselves
(Example A1 in the Supplementary Material exhibits cyclic equilibria that would exist in
the absence of this assumption). To show that every protocol-free MPE is simple, we show
that if there were an allocation from which the society would expect to reach a stable al-
location in exactly two steps, then for a suitable protocol it would instead decide to skip
the intermediate step and transit to the stable allocation immediately. Finally, given that
every MPE is simple, the society may always allocate the objects that would otherwise be
wasted to some veto player (e.g., the proposer) without facing adverse dynamic conse-
quences (“the slippery slope”), which ensures that each transitions involves no waste and
the allocations are efficient.

The following corollary highlights that the possibility of small transfers may be viewed
as an equilibrium refinement.

COROLLARY 1: Suppose that for game Γ with parameter values β�ε�δ as in Proposition 1,
φ = φσ is the transition mapping that corresponds to a protocol-free MPE σ . Then consider
game Γ ′ with the same β′ = β, but ε′ = δ′ = 0. Then there exists protocol-free MPE σ ′ with
the same transition mapping φσ ′ =φ.

The equilibrium transitions described in Proposition 1 are not necessarily unique as the
following Example 5 demonstrates. Still, an allocation stable in one of such equilibria is
stable in all such equilibria.

EXAMPLE 5: Suppose there are b = 3 units of wealth, four agents, the required
number of votes is k = 3, and the set of veto players is V = {#4}. In this case,
there is a simple equilibrium with transition mapping φ, under which allocations
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(0�0�0;3), (1�1�0;1), (1�0�1;1), and (0�1�1;1) are stable. Specifically, we have the tran-
sitions φ(2�1�0;0)= φ(1�2�0;0) = (1�1�0;1), φ(0�2�1;0) = φ(0�1�2;0)= (0�1�1;1),
φ(2�0�1;0) = φ(1�0�2;0) = φ(1�1�1;0) = (1�0�1;1), and any allocation with x4 = 2
has φ(x) = (0�0�0;3). However, another mapping φ′ coinciding with φ except that
φ′(1�1�1;0)= (1�1�0;1) may also be supported in equilibrium.

3.2. Stable Allocations

Our next goal is to get a more precise characterization of equilibrium mappings and
stable allocations. Let us define a dominance relation � on A as

y � x ⇐⇒ ‖y‖ ≤ ‖x‖ and {i ∈ N : yi ≥ xi} ∈W and yj > xj for some j ∈ V �

Intuitively, allocation y dominates allocation x if transition from x to y is feasible and
some powerful player prefers y to x strictly so as to be willing to make this motion, and
also there is a winning coalition that (weakly) prefers x to y . Note that this does not im-
ply that y will be proposed or supported in an actual voting against x because of further
changes this move may lead to. Following the classic definition von Neumann and Mor-
genstern (1947), we call a set of states S ⊂ A von Neumann–Morgenstern-stable (vNM-
stable) if the following two conditions hold: (i) For no two states x� y ∈ S it holds that
y � x (internal stability) and (ii) for each x /∈ S there exists y ∈ S such that y � x (external
stability).

The role of this dominance relation for our redistributive game is demonstrated by the
following result.

PROPOSITION 2: For any protocol-free MPE σ , the set of stable allocations Sσ = {x ∈ A :
φσ(x)= x} is a von Neumann–Morgenstern-stable set for the dominance relation �.

Proposition 2 implies that the fixed points of transition mappings of non-cooperative
equilibria described in Proposition 1 correspond to a von Neumann–Morgenstern-stable
set. Our next result states that such a stable set is also unique; this implies, in particular,
that for any two protocol-free MPE σ and σ ′, the set of stable allocations is identical.
Consequently, we are able to study stable allocations irrespective of a particular equilib-
rium of the bargaining game.

The following Proposition 3 gives a precise characterization of stable allocations. To
formulate it, let us denote m = n − v, the number of non-veto players; q = k − v, the
number of non-veto players that is required in any winning coalition; d =m−q+ 1 = n−
k+1, the size of a minimal blocking coalition of non-veto players; and, finally, r = �m/d�,
the maximum number of pairwise disjoint blocking coalitions that non-veto players may
be split into.

PROPOSITION 3: For the binary relation �, a vNM-stable set exists and is unique.9 Each
element x of this set S has the following structure: the set of non-veto players M = N \ V
may be split into a disjoint union of r groups G1� � � � �Gr of size d and one (perhaps empty)
group G0 of size m − rd, such that inside each group, the distribution of wealth is equal:

9Proposition A1 in the Supplemental Material proves this set is also the largest consistent set (Chwe (1994)).
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xi = xj = xGk
whenever i� j ∈ Gk for some k ≥ 1, and xi = 0 for any i ∈ G0. In other words,

x ∈ S if and only if the non-veto players can be permuted in such a way that

x= (λ1� � � � � λ1︸ ︷︷ ︸
d times

�λ2� � � � � λ2︸ ︷︷ ︸
d times

� � � � � λr� � � � � λr︸ ︷︷ ︸
d times

�0� � � � �0︸ ︷︷ ︸
m−rd times

;xm+1� � � � � xn︸ ︷︷ ︸
veto players

)

for some λ1 ≥ · · · ≥ λr ≥ 0 such that d
∑r

j=1 λj + ∑n−m

l=1 xm+l ≤ b.

The proof of this result is important for understanding the structure of endogenous veto
groups, and we provide it in the text. We show that starting from any wealth allocation
x ∈ S, it is impossible to redistribute the units between non-veto players without making
at least d players worse off, and thus no redistribution would gain support from a winning
coalition. In contrast, starting from any allocation x /∈ S, such redistribution is possible.
Furthermore, our proof will show that there is an equilibrium where in any transition, the
set of individuals who are worse off is limited to the d − 1 richest non-veto players.

PROOF OF PROPOSITION 3: We will prove that set S is vNM-stable, thus ensuring exis-
tence. To show internal stability, suppose that x� y ∈ S and y � x, and let the r groups be
G1� � � � �Gr and H1� � � � �Hr , respectively. Without loss of generality, we can assume that
each set of groups is ordered so that xGj

and yHj
are nonincreasing in j for 1 ≤ j ≤ r. Let

us prove, by induction, that xGj
≤ yHj

for all j.
The induction base is as follows. Suppose that the statement is false and xG1 > yH1 ; then

xG1 > ys for all s ∈M . This yields that for all agents i ∈G1, we have xi > yi. Since the total
number of agents in G1 is d, G1 is a blocking coalition and, therefore, it cannot be true
that yj ≥ xj for a winning coalition, contradicting that y � x.

For the induction step, suppose that xGl
≤ yHl

for 1 ≤ l < j, and also assume, to obtain
a contradiction, that xGj

> yHj
. Given the ordering of groups, this means that for any l, s

such that 1 ≤ l ≤ j and j ≤ s ≤ r, xGl
> yHs . Consequently, for agent i ∈ ⋃j

l=1 Gl to have
yi ≥ xi, he must belong to

⋃j−1
s=1 Hs. This implies that for at least jd − (j − 1)d = d agents

in
⋃j

l=1 Gl ⊂ M , it cannot be the case that yi ≥ xi, which contradicts the assumption that
y � x. This establishes that xGj

≤ yHj
for all j and, therefore,

∑
i∈M xi ≤ ∑

i∈M yi. But y � x
would require that xi ≤ yi for all i ∈ V with at least one inequality strict, which implies∑

i∈N xi <
∑

i∈N yi, a contradiction to ‖y‖ ≤ ‖x‖. This proves internal stability of set S.
Let us now show that the external stability condition holds. To do this, we take any x /∈ S

and will show that there is y ∈ S such that y � x. Without loss of generality, we can assume
that xi is nonincreasing for 1 ≤ i ≤ m (i.e., non-veto players are ordered from richest to
poorest). Let us denote Gj = {(j − 1)d+ 1� � � � � jd} for 1 ≤ j ≤ r and G0 =M \ (⋃r

j=1 Gj).
Since x /∈ S, it must be that either for some Gj , 1 ≤ j ≤ r, the agents in Gj do not get the
same allocation or they do, but some individual i ∈ G0 has xi > 0. In the latter case, we
define y by

yi =

⎧⎪⎪⎨
⎪⎪⎩
xi if i ≤ dr or i >m+ 1�
0 if dr < i ≤m�

xi +
∑
j∈G0

xj if i = m+ 1�

(In other words, we take everything possessed by individuals in G0 and distribute it among
veto players, for example, by giving everything to one of them.) Obviously, y ∈ S and
y � x.
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If there exists a group Gj such that not all of its members have the same amount of
wealth, let j be the smallest such number. For i ∈ Gl with l < j, we let yi = xi. Take the
first d − 1 members of group Gj , Z = {(j − 1)d + 1� � � � � jd − 1}. Together, they possess
z = ∑jd−1

i=(j−1)d+1 xi > (d − 1)xjd (the inequality is strict precisely because not all xi in Gj

are equal). Let us now take these z units and redistribute them among all the agents
(perhaps including those in Z) in the following way. For each s : j < s < r, we let y(s−1)d =
y(s−1)d+1 = · · · = ysd−1 = x(s−1)d . As the agent with number (s − 1)d was the richest among
these d agents, they are weakly better off now that they have the same amount of wealth.

Now observe that in each group s, we spent at most (d − 1)(x(s−1)d − xsd−1) ≤ (d −
1)(x(s−1)d − xsd). For s = r, we take d agents as D = {(r − 1)d� � � � �m} ∪Z′, where Z′ ⊂ Z
is a subset of the first d − (m − (r − 1)d + 1) = rd − m − 1 agents needed to make D a
collection of exactly d agents (notice that Z′ = ∅ if |G0| = d − 1 and Z′ = Z if G0 = ∅).
For all i ∈D, we let yi = x(r−1)d (making all members of G0 weakly better off and spending
at most (d − 1)x(r−1)d units) and we let yi = 0 for each i ∈ Z \Z′. We have thus defined yi
for all i ∈ M and distributed

c ≤ (d − 1)(xjd − x(j+1)d + · · · + x(r−2)d − x(r−1)d + x(r−1)d)= (d − 1)xjd�

having z − c > 0 remaining at our disposal. As before, we let ym+1 = xm+1 + z − c and
yi = xi for i > m + 1. We have constructed y ∈ S such that ‖y‖ = ‖x‖, ym+1 > xm+1, and
{i ∈ N : yi < xi} ⊂ Z. The latter, given |Z| ≤ d − 1, implies {i ∈ N : yi ≥ xi} ∈ W , which
means y � x. This completes the proof of external stability, and thus S is vNM-stable.

Let us now show that S is a unique stable set defined by �.10 Suppose not, so there is
S′ that is also vNM-stable. Let us prove that x ∈ S ⇔ x ∈ S′ by induction on

∑
i∈M xi. The

induction base is trivial: if xi = 0 for all i ∈M , then x ∈ S by definition of S. If x /∈ S′, then
there must be some y such that y � x. But for such y ,∑

i∈N
yi ≥

∑
i∈V

yi >
∑
i∈V

xi =
∑
i∈N

xi�

which contradicts ‖y‖ ≤ ‖x‖.
The induction step is as follows. Suppose that for some x with

∑
i∈M xi = j > 0, x ∈ S

but x /∈ S′ (the reverse case is treated similarly). By external stability of S′, x /∈ S′ implies
that for some y ∈ S′, y � x, which in turn yields that

∑
i∈V yi >

∑
i∈V xi and ‖y‖ ≤ ‖x‖. We

have ∑
i∈M

yi = ‖y‖ −
∑
i∈V

yi < ‖x‖ −
∑
i∈V

xi =
∑
i∈M

xi = j�

For y such that
∑

i∈M yi < j induction yields that y ∈ S ⇔ y ∈ S′, and thus y ∈ S. Conse-
quently, there exists some y ∈ S such that y � x, but this contradicts x ∈ S. This contra-
diction establishes uniqueness of the stable set. Q.E.D.

Proposition 3 enables us to study the set of stable allocations S without reference to a
particular equilibrium σ . The characterization obtained in this proposition gives several
important insights. First, the set of stable allocations (fixed points of any transition map-
ping under any equilibrium) does not depend on the mapping; it maps into itself when

10An alternative (nonconstructive) way to prove uniqueness is to use a theorem by von Neumann and Mor-
genstern (1947) that states that if a dominance relation allows for no finite or infinite cycles, the stable set is
unique.
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either the veto players V or the non-veto players N \V are reshuffled in any way. Second,
the allocation of wealth among veto players does not have any effect on stability of allo-
cations. Third, each stable allocation has a well defined “class” structure: every non-veto
player with a positive allocation is part of a group of size d (or a multiple of d) of equally
endowed individuals who have incentives to protect each other’s interests.11

To demonstrate how such protection works, consider the following example.

EXAMPLE 6: There are b = 12 units, n = 5 individuals with one veto player (#5), and
a supermajority of four is needed for a transition (k = 4). By Proposition 3, stable al-
locations have two groups of size two. Let φ be a transition mapping for some sim-
ple MPE σ , and let us start with stable allocation x = (4�4�2�2;0). Suppose that we
exogenously remove a unit from player #2 and give it to the veto player; that is, con-
sider y = (4�3�2�2;1). Allocation y is unstable, and player #1 will necessarily be ex-
propriated. However, the way redistribution may take place is not unique; for example,
φ(y) = (3�3�2�2;2) is possible, but so is φ(y) = (2�3�3�2;2) or φ(y) = (2�3�2�3;2).
Now suppose that one of the players possessing two units, say player #3, was expropriated,
that is, take z = (4�4�1�2;1). Then it is possible that the other member, player #4, would
be expropriated as well: φ(z) = (4�4�1�1;2). But it is also possible that one of the richer
players may be expropriated instead: for example, a transition to φ(z) = (4�1�1�4;2)
would be supported by all players except #2.

Example 6 demonstrates that equilibrium protection that agents provide to each other
may extend beyond members of the same group. In the latter case, player #2 would op-
pose a move from (4�4�2�2;0) to (4�4�1�2;1) if in the subgame the next move is to
(4�1�1�4;2). Thus, richer players might protect poorer ones, but not vice versa; as Propo-
sition 4 below shows, this is a general phenomenon.

We see that, in general, an exogenous shock may lead to expropriation, on the subse-
quent equilibrium path, of players belonging to different wealth groups; the particular
path depends on the equilibrium mapping, which is not unique. However, if we apply the
refinement that only equilibria with a “minimal” (in terms of the number of units that
need to be transferred) redistribution along the equilibrium path are allowed, then only
the players with exactly the same wealth would suffer from the redistribution that follows
a shock. More importantly, Example 6 demonstrates the mechanism of mutual protection
among players with the same wealth. If a non-veto player becomes poorer, at least d − 1
other players would suffer in the subsequent redistribution. This makes them willing to
oppose any redistribution from any of their members. Their number, if we include the
initial expropriation target himself, is d, which is sufficient to block a transition. Thus,
members of the same group have an incentive to act as a politically cohesive coalition, in
which its members mutually protect each others’ economic interests.

Proposition 3 also allows for the following simple corollary.

COROLLARY 2: Suppose that in game Γ defined above, the set of stable allocations (in any
protocol-free MPE) is S. Take any integer h > 1, and consider the set of allocations Ah given
by

Ah = {
x ∈ (

R
+)n : ‖x‖ ≤ b and ∀i ∈N�hxi ∈ Z

}
�

11It is permissible that two groups have equal allocations, xGj
= xGk

, or that members of some or all groups
get zero. In particular, any allocation x where xi = 0 for all i ∈ M is in S. Notice that if non-veto players get
the same under two allocations x and y , so x|M = y|M , then x ∈ S ⇔ y ∈ S; moreover, this is true if xi = yπ(i)
for all i ∈M and some permutation π on M .
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Take βh > 1 − 1
bh+2 , εh <

1−β

b(h+1) , and δh < εh. Then the set of stable allocations Sh in the new
game Γ h (again, in any protocol-free MPE) satisfies S ⊂ Sh.

In other words, taking a finer partition of units of redistributions (splitting each unit
into h indivisible parts) preserves stable allocations. This result follows immediately from
Proposition 3. It effectively says that even though our results are obtained under the as-
sumption of a discrete number of indivisible units, they have a broader appeal: once di-
viding units into several parts is allowed, the stable allocations remain stable. This implies
that the set S not only describes stable outcomes for any appropriately refined equilib-
rium within the game, but is also a robust predictor of stable allocations if the minimal
units are redefined, provided, of course, that players interact frequently enough.12

The next proposition generalizes Example 6 so that one can better understand the me-
chanics of mutual protection. It highlights that protection of a non-veto player is sus-
tained, in equilibrium, by equally endowed or richer individuals, rather than by those who
have less wealth. Proposition 4 is formulated as follows. We take some equilibrium char-
acterized in Proposition 3 and consider a stable allocation. Then we consider another,
perturbed, allocation, in which one non-veto player has less wealth. We show that the re-
sulting allocation is unstable, and compare the ultimate stable allocation with the initial,
unperturbed one.

PROPOSITION 4: Consider any MPE σ and let φ =φσ . Suppose that the voting rule is not
unanimity (k < n), so d > 1. Take any stable allocation x ∈ S and some non-veto player i ∈
M , and let new allocation y ∈ A be such that y|M\{i} = x|M\{i} and yi < xi. Then the following
statements hold:

(i) Player i will never be as well off as before the shock, but he will not get any worse off:
yi ≤ [φ(y)]i < xi. Furthermore, the number of players who suffer as a result of a redistribution
on the equilibrium path defined by σ is given by∣∣{j ∈ M \ {i} : [φ(y)

]
j
< yj

}∣∣ = d − 1�

(ii) Suppose, in addition, that for any k ∈ M with xk < xi, xk ≤ yi, that is, the shock did
not make player i poorer than the players in the next wealth group. Then [φ(y)]j < yj implies
xj ≥ xi, that is, members of poorer wealth groups do not suffer from redistribution.

The essence of Proposition 4 is that following a negative (exogenous) shock to some
player’s wealth (yi < xi), at least d − 1 other players are expropriated, and player i never
fully recovers. If the shock is relatively minor so the ranking of player i with respect to
other wealth groups did not change (weak inequalities are preserved),13 then it must be

12Notice that since the sequence of stable sets satisfies S ⊂ S2⊂ S3⊂ · · · , their limit is a well defined set
S∞ = ⋃

j>1 Sj , where the overbar denotes topological closure. This set has the simple structure

S∞ = {
x ∈ � | ∃ρ ∈ Sn : xρ(1) = · · · = xρ(d)� xρ(d+1) = · · · = xρ(2d)� � � � � xρ((r−1)d+1) = · · · = xρ(rd)

}
�

where � is the (N − 1)-dimensional unit simplex and ρ ∈ Sn is any permutation. However, for these limit
allocations to be approached in the non-cooperative game that we study, one would have to take a sequence of
discount factors βj that tends to 1, so interactions should be more and more frequent. Intuitively, to study fine
partitions of the state space, one would need finer partition of time intervals as well to prevent “undercutting.”
If this condition does not hold, veto players would be able to expropriate everything in the long run (see, e.g.,
Nunnari (2016)).

13Note that this will always be the case if, for example, yi = xi − 1.
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equally endowed or richer people who suffer from subsequent redistribution. Thus, in
the initial stable allocation x, they have incentives to protect i from the negative shock.
This result may be extended to the case when a negative shock affects more than one
(but less than d) non-veto players. The proof is straightforward when all the affected
players belong to the same wealth group. However, this requirement is not necessary. If
expropriated players belong to different groups, then the lower bound of the resulting
wealth after redistribution is the amount of wealth that the poorest (post-shock) player
possesses. In this case, the number of players who suffer as a result of the redistribution
following the shock is still limited by d − 1.

Our next step is to derive comparative statics with respect to different voting rules given
by k and v.

4. COMPARING VOTING RULES

Suppose that we vary the supermajority requirement, k, and the number of veto play-
ers, v. The following result easily follows from the characterization in Proposition 3.

PROPOSITION 5: Fix the number of individuals n.
(i) The size of each group Gj , j ≥ 1, is decreasing as the supermajority requirement k

increases. In particular, for k = v + 1, d = n− v = m, and thus all the non-veto players form
a single group; for k = n (unanimity rule), d = 1, and so each player can veto any change.

(ii) The number of groups is weakly increasing in k, from 1 when k = v + 1 to m when
k = n (from 0 when k< v+ 1).

(iii) The size of each group Gj , j ≥ 1, does not depend on the number of veto players, but
as v increases, the number of groups weakly decreases, reaching zero for v > n− d.

This result implies that the size of groups does not depend on the number of veto
players, but only on the supermajority requirement as it determines the minimal size of
blocking coalitions. As the supermajority requirement increases, groups become smaller.
This has a very simple intuition: as redistribution becomes harder (it is necessary to get
approval of more players), it takes fewer non-veto players to defend themselves; as such,
smaller groups are sufficient. Conversely, the largest group (all non-veto players together)
is formed when a single vote from a non-veto player is sufficient for veto players to accept
a redistribution; in this case, non-veto players can only keep a positive payoff by holding
equal amounts.

Now consider the number of groups that (the non-veto part of) the society is divided
into. Intuitively, the number of groups corresponds to the maximum possible economic
heterogeneity that a society can have in equilibrium. If we interpret the equally endowed
non-veto members of the society as economic classes (in the sense that members of the
same class have similar possessions, whereas members of different classes have different
amounts of wealth, despite having the same political power), then the number of groups
would correspond to the largest number of economic classes that the society can contain.
With this interpretation, Proposition 4 implies that it is members of the same or richer
economic classes that protect a non-veto player from expropriation. Still, there might be
some residual indeterminacy about the number of classes: for any parameters it is pos-
sible that all non-veto players possess zero and thus belong to the same class; similarly,
the characterization in Proposition 3 allows for classes that are larger than others and
that span several groups Gj . Thus, societies with few groups are bound to be homogenous
(among non-veto players), whereas societies with many veto groups might be heteroge-
nous with respect to wealth.
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To better understand the determinants of the number of groups, take n large and v
small (so that m is large enough) and start with the smallest possible value of k = v + 1.
Then all the non-veto players possess the same wealth in any equilibrium. In other words,
all players, except perhaps those endowed with veto power, must be equal. If we increase
k, then two groups will form, one of which may possess a positive amount, while the rest
possesses zero, which is clearly more heterogenous than for k = v + 1. If we increase k
further beyond v+ (m+ 1)/2, then both groups may possess positive amounts and a third
group will form further, and so forth. In other words, as k increases, so does the number of
groups, which implies that the society becomes less and less homogenous and can support
more and more groups of smaller size. We see that in this model, heterogeneity of the
society is directly linked to difficulty of expropriation, measured by the degree of majority
needed for expropriation or, equivalently, by the minimal size of a coalition that is able
to resist attempts to expropriate. If we interpret the equally endowed groups as economic
classes, then we have the following result: the more politically difficult it is to expropriate,
the finer is the class division of the society.

COROLLARY 3: Suppose that k = v+ 1; as before, d = n− v. In this case, an allocation x
is stable if xi = xj for all non-veto players i and j, that is, if all non-veto players hold the same
amount. More generally, a single group of non-veto players with a positive amount of wealth
may be formed if and only if k − v ≡ q ≤ (m + 1)/2. In this case, some n − k + 1 non-veto
players belong to the group and get the same amount, and the rest get zero.

Proposition 5 dealt with comparing stable allocations for different k and v. We now
study whether or not an allocation that was stable under some rules k and v remains
stable if these rules change. For example, suppose that we make an extra individual a
veto player (increase v) or increase the majority rule requirement (increase k). A naive
intuition would say that in both these cases, individuals would not be worse off from
better property rights protection. As the next proposition shows, in general, the opposite
is likely to be true. Let Sk�V denote the set of stable allocations under the supermajority
requirement k and the set of veto players V .

PROPOSITION 6: Suppose that allocation x is stable for k (k < n) and v (x ∈ Sk�V ). Then
the following statements hold:

(i) If we increase the number of veto players by granting an individual i /∈ V veto power so
that the new veto set is V ∪ {i}, then allocation x ∈ Sk�V ∪{i} if and only if xi = 0.

(ii) Suppose k + 1 < n and all groups Gj , j ≥ 0, had different amounts of wealth under
x: xGj

	= xGj′ for j′ 	= j (and x|M 	= 0). If we increase the majority requirement from k to
k′ = k+ 1, and k′ < n, then x /∈ Sk+1�V .

The first part of this proposition suggests that adding a veto player makes an allocation
unstable, and therefore will lead to a redistribution that hurts some individual. There is
only one exception to this rule: if the new veto player had nothing to begin with, then
the allocation will remain stable. On the other hand, if the new veto player had a positive
amount of wealth, then although he will be weakly better off from becoming a veto player,
there will be at least one other non-veto player who will be worse off. Indeed, removing
a member of one of the groups Gj without changing the required sizes of the groups
must lead to redistribution. This logic would not apply if V ′ =N , when all players become
veto players; however, the proposition is still true in this case because then i would have
to be the last non-veto player, and under k < n he would have to get xi = 0 in a stable
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allocation x. Interestingly, removing a veto player i (making him non-veto) will also make
x unstable as long as xi > 0. This is, of course, less surprising, as this individual may be
expected to be worse off.

The second part says that if all groups got different allocations (which is the typical
case), then an increase in k would decrease the required group sizes, leading to redis-
tribution. When some groups have equal amounts of wealth in a stable allocation, then
allocation x may, in principle, remain stable. This is trivially true when all non-veto play-
ers get zero (xi = 0 for all i /∈ V ), but, as the following Example 7 demonstrates, this is
possible in other cases as well.

EXAMPLE 7: Suppose n = 7, V = {#7}, b = 6, and the supermajority requirement is
k = 5. Then x = (1�1�1�1�1�1;0) is a stable allocation, because d = 3 and the non-veto
players form two groups of size three. If we increase k to k′ = 6, then x remains stable, as
then d′ = 2 and x has three groups of size two.

5. DISCUSSION

In this section, we put two main contributions of our paper—the emergence of a class
structure in a multilateral bargaining setting and the non-monotonic effect of the number
of veto players and supermajority requirements on the stability of allocations—in the con-
text of the existing literature. Also, we discuss the role of specific technical assumptions.

In Propositions 2 and 3, we established one-to-one correspondence between sta-
ble allocations of the non-cooperative bargaining game and a unique von Neumann–
Morgenstern stable set, which greatly simplified the analysis. Similar links between co-
operative and non-cooperative definitions of stability were observed in earlier works:
the theoretical foundations for implementation of the vNM-stable set in non-cooperative
games are laid down in Anesi (2006, 2010) and Acemoglu, Egorov, and Sonin (2012),
in games of different generality. In contrast to these studies, we allow players to be in-
different among allocations, which required us to define vNM stability with respect to a
different dominance relation. The main novel aspect of the current paper is the explicit
and intuitive characterization of the stable set (Proposition 3). This characterization al-
lowed us to more thoroughly explore the forces that make a stable allocation stable and
to study reactions of these stable allocations to exogenous shocks, thus identifying players
who would resist deviations from a stable allocation (Proposition 4).

The tractability of the model, made possible by this explicit characterization, allowed
to study comparative statics with respect to the two main parameters: the number of veto
players and the supermajority requirement. In static models, more veto players and/or a
higher degree of supermajority make any given allocation more likely to be stable, because
a larger coalition is required to change it (see, e.g., Tsebelis (2002) in the case of veto
players and Chapter 6 in Austen-Smith and Banks (2005) in the case of supermajority
requirements). This paper proves that in dynamic models the impact of these parameters
on stability of allocations is nonmonotone, and it is the first do so, to the best of our
knowledge. We also show, in Proposition 6, that an increase in the number of veto players
or the supermajority requirement generically destroys stability of an allocation.

While the idea of nonmonotonicity in a multilateral bargaining setting is intuitive, such
results have not been stated formally, most likely due to the difficulty of obtaining a
tractable characterization in such models. However, similar effects in the literature on
voting on reforms (even in two-period models) have been known. In Barbera and Jackson
(2004), if some voting rule is stable, then one that requires a larger degree of superma-
jority is not necessarily stable, because while more votes are needed to change the rule,
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many more players might find the new rule suboptimal and be willing to change it. Simi-
larly, Gehlbach and Malesky (2010) show that an additional veto player might allow for a
reform that would have been impossible otherwise as some players fear a slippery slope.14

The explicit characterization demonstrates that stable allocations are organized as
“economic classes,” members of which protect each other from expropriation. This is in
contrast to the existing literature on bargaining with an endogenous status quo, starting
with Kalandrakis (2004), which emphasizes eventual appropriation of the entire surplus
by a single player. We would argue that economic classes comprised of similar individuals
is a more realistic outcome. The observation that different ex ante identical players might
be split into groups with similar payoffs has remote antecedents in the legislative bargain-
ing literature. For example, in Baron and Ferejohn (1989), the set of players is ultimately
subdivided into three distinct groups, ordered in terms of wealth: the proposer, the win-
ning coalition, and the rest.15 In Bernheim, Rangel, and Rayo (2006), the last proposer
is able to implement his ideal policy, thus again dividing the society into three unequal
groups. In these papers, this split into groups resulted from terminal-period effects. Our
results demonstrate that economic classes may emerge in a dynamic environment with
no terminal period; we also study the effects of the models’ primitives on their numbers
and their sizes, showing, in particular, that a larger supermajority requirement results in
a larger number of smaller classes (Propositions 3 and 5).

Any model of multilateral bargaining makes a number of specific modeling assump-
tions.16 Perhaps most consequentially, ours is a model of discrete policy space. Overall,
the literature on multilateral bargaining with endogenous status quo is split between pa-
pers that assume a continuous (divide-a-dollar) policy space and a discrete (e.g., finite)
one. Baron and Ferejohn (1989), Kalandrakis (2004, 2010), Baron and Bowen (2015),
Richter (2014), Anesi and Seidmann (2014), and Nunnari (2016), among others, assume
that the policy space is continuous, while Anesi (2010), Diermeier and Fong (2011, 2012),
and Anesi and Duggan (2017) assume a discrete one, as we do. We view the benefit of
our approach mainly in that it considerably simplifies the analysis: in fact, the use of the
von Neumann–Morgenstern-stable set in all voting models that we are aware of requires
a discrete space. While we are not able to analyze the model with a continuous policy
space, it is reassuring that the limit set of our equilibrium allocations when the size of the
unit approaches zero has the same class structure as the set of stable sets in Proposition 3,
suggesting further robustness of our results.

When indifferences are present because of the nature of the model, most papers, in-
cluding Kalandrakis (2004), Diermeier and Fong (2011), and Anesi and Duggan (2015),
assume that a player supports the new proposal when he is indifferent. In contrast, Baron
and Bowen (2015) argue that it is important to assume that players vote against the pro-
posal when they are indifferent. Anesi and Seidmann (2015) assume that players are sup-
portive of the proposal when they are indifferent, depending on the coalition formed
on the equilibrium path. (Anesi and Duggan (2015) extend this construction to the spa-
tial setting.) We assume that transitions unlock an arbitrarily small budget that may be

14In models with information aggregation in voting (e.g., Feddersen and Pesendorfer (1998)), the superma-
jority requirement may have nonmonotone effects as it influences pivotal events that players condition upon.

15While the identity of the first proposer and thus the realized allocation is random, the expected payoffs
are identical in all subgame perfect equilibria, as shown by Eraslan (2002) and, in a more general setting, by
Eraslan and McLennan (2013).

16There is an important parallel in the coalition formation literature. See, for example, Seidmann and Win-
ter (1998) on the impact of the possibility of renegotiation on the structure of the ultimate coalition, Hyndman
and Ray (2007) on equilibria in games with possible binding constraints, or Ray and Vohra (2015) on the
farsighted stable set.
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used to resolve indifferences. Intuitively, this breaks indifferences in the direction of ac-
cepting the proposal, which is consistent with the contract theory literature Bolton and
Dewatripont (2004). The fact that the results hold for any size of this additional budget
provided that it is small enough points to robustness of our equilibria.

6. CONCLUSION

The modern literature often considers constitutional constraints and other formal in-
stitutions as instruments of property rights protection. The relationship between veto
power given to different government bodies, supermajority requirements, or additional
checks and balances and better protection seems so obvious that there is little left to
explain. Allston and Mueller (2008) proclaim, “A set of universally shared beliefs in a
system of checks and balances is what separates populist democracies from democra-
cies with respect for the rule of law.” Yet, from a political economy perspective, property
rights systems should be understood as equilibrium outcomes rather than exogenous fixed
constraints. Legislators or, more generally, any political actors, cannot commit to entitle-
ments, prerogatives, and rights. Rather, any allocation must be maintained in equilibrium.

Our results suggest that a dynamic perspective may lead to a more subtle understand-
ing of the effects of veto players and supermajority rules. In a dynamic environment, they
lead to emergence of endogenous veto groups of players that sustain a stable allocation
in equilibrium. The society has a “class structure”: any non-veto player with a positive
wealth is part of a group of equally endowed individuals who have incentives to protect
each other’s interests. The effect of exogenous constraints on endogenous veto groups is
complex. One the one hand, endogenous veto groups may protect each other in equilib-
rium even in the absence of formal veto rights. One the other hand, adding more veto
players may lead to more instability and policy change if such additions upset dynamic
equilibria where players were mutually protecting each other.

Models of multilateral bargaining with endogenous status quo seem to be a natural and
very fruitful approach to study the political economy of property rights protection. Our
results point to the importance of looking beyond formally defined property rights and,
more generally, beyond formal institutions. Thus, a change in formal institutions might
strengthen protection of property rights of designated players, yet have negative conse-
quences for protection of property rights of the others, and, as a result, have a negative
overall effect.
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A1. PROOFS

WE START WITH A FEW AUXILIARY LEMMAS that help us prove Proposition 1. In what
follows, we let ξt

i denote transfers less transition costs, if any, obtained by player i in
period t.

LEMMA A1: Any protocol-free MPE σ is acyclic.

PROOF: Let φ =φσ be the equilibrium transition mapping generated by equilibrium σ .
Suppose that there is a cycle starting from x: φ(x) �= x, but φl(x) = x for some l > 1.
Without loss of generality, let l be the minimal such value, that is, the length of the cycle.
Let us first show that for every i ∈ V , [φj(x)]i = xi for all j. Suppose not. Then without
loss of generality we may assume to have chosen x such that xi ≥ [φj(x)]i for all j (so
i gets his maximum allocation along the cycle) and, moreover, that [φ(x)]i < xi. Then,
in the period that started with xt−1 = x and where, in equilibrium, transition to φσ(x)
is made, the continuation utility of player i satisfies (after taking the expectation over
possible realizations of the protocols)

Ut
i ≤ [

φσ(x)
]
i
+ ξ +β

([
φ2

σ(x)
]
i
+ ξ

) + · · · +βl−1
([
φl

σ(x)
]
i
+ ξ

) +βlUt
i �

where ξ ∈ [0� (b + 1)ε] is the maximum possible value of ξt
i over different periods. We

thus have

Ut
i ≤

[
φσ(x)

]
i
+ ξ +β

([
φ2

σ(x)
]
i
+ ξ

) + · · · +βl−1
([
φl

σ(x)
]
i
+ ξ

)
1 −βl

≤ (xi − 1)+ ξ +β(xi + ξ)+ · · · +βl−1(xi + ξ)

1 −βl

= xi + ξ

1 −β
− 1

1 −βl
<

xi + ξ

1 −β
− 1�

At the same time, if player i always vetoes all proposals in all subsequent periods, his
continuation utility would be Ũ t

i = xi
1−β

. Since ξ

1−β
< (b+1)ε

1−β
< 1, we have Ut

i < Ũt
i , which

implies that player i has a profitable deviation. Hence, it must be that [φj
σ(x)]i = xi for

all j ≥ 1 and for all i ∈ V .
Since each veto player gets xi in each period, the equilibrium payoff of each player must

equal Ut
i = xi−δ

1−β
. However, player i can always guarantee himself Ũ t

i = xi
1−β

by vetoing all
proposals. Therefore, he has a profitable deviation, which is impossible in equilibrium.
This contradiction completes the proof. Q.E.D.

LEMMA A2: Consider a one-step mapping φ, which is independent of protocols, and sup-
pose that the current period is t and the current allocation is x = xt−1. Suppose that some

© 2017 The Econometric Society DOI: 10.3982/ECTA12132

http://www.econometricsociety.org/suppmatlist.asp
http://www.econometricsociety.org/
http://dx.doi.org/10.3982/ECTA12132


2 D. DIERMEIER, G. EGOROV, AND K. SONIN

player i has [φ(y)]i > [φ(z)]i for some y� z ∈ A. Then player i prefers transition to y to tran-
sition to z; in other words (expectations are with respect to realization of protocols),

yi +Eξt
i +

∞∑
τ=1

βτ
([
φ(y)

]
i
+Eξt+τ

i

)
> zi +Eξ̃t

i +
∞∑
τ=1

βτ
([
φ(z)

]
i
+Eξ̃t+τ

i

)
� (A1)

where ξ and ξ̃ reflect the transfers on path that follow acceptance of y and z, respectively.
Furthermore, the same is true if [φ(y)]i = [φ(z)]i, but yi > zi.

PROOF: Suppose [φ(y)]i > [φ(z)]i, but the inequality (A1) does not hold. Since
ξt+τ
i � ξ̃t+τ

i ∈ [0� (b+ 1)ε] for any τ ≥ 0, this must imply

yi +
∞∑
τ=1

βτ
[
φ(y)

]
i
≤ zi +

∞∑
τ=1

βτ
[
φ(z)

]
i
+ (b+ 1)ε

1 −β
� (A2)

Since [φ(y)]i > [φ(z)]i implies [φ(y)]i − [φ(z)]i ≥ 1, this implies

yi + β

1 −β
≤ zi + (b+ 1)ε

1 −β
�

Given that zi − yi ≤ b, this implies β−(b+1)ε
1−β

≤ b, which, since we assumed (b+ 1)ε < 1 −β,
implies β

1−β
≤ b + 1, which is equivalent to β ≤ 1 − 1

b+2 , a contradiction. This proves the
first part of the lemma.

Now suppose that [φ(y)]i = [φ(z)]i, but yi > zi. As before, assume not, in which case
(A2) would hold. Now, given that yi − zi ≥ 1, (A2) would imply 1 ≤ (b+1)ε

1−β
, which contra-

dicts our assumption that (b+1)ε < 1−β. This contradiction completes the proof. Q.E.D.

LEMMA A3: Suppose that in protocol-free MPE σ , x ∈ A is such that x �= φσ(x) =φ2
σ(x).

Then φσ(x)� x.

PROOF: Denote y = φσ(x). Let us first prove that {i ∈ N : yi ≥ xi} ∈ W . Suppose, to
obtain a contradiction, that this is not the case. Take some veto player l and consider
protocol π where only player l proposes and does so only once (so π = (l)). Under this
protocol, alternative y must be proposed and subsequently supported at the voting stage
by a winning coalition of players. Now consider any agent i such that yi < xi, which implies
xi − yi ≥ 1. If yi is accepted, agent i gets continuation utility (assuming the current period
is t) that satisfies

Ut
i ≤ yi + (b+ 1)ε+β

(
yi + (b+ 1)ε

) + · · · = yi + (b+ 1)ε
1 −β

�

If, however, yi is rejected, then the continuation utility satisfies

Ũ t
i ≥ xi +βyi +β2yi + · · · = xi + β

1 −β
yi�
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Since bε < 1 −β, we have

Ut
i − Ũ t

i ≤ yi + (b+ 1)ε
1 −β

−
(
xi + β

1 −β
yi

)

= yi − xi + (b+ 1)ε
1 −β

≤ (b+ 1)ε
1 −β

− 1 < 0�

Therefore, such player i prefers the alternative y to fail at the voting stage. This implies
that Ut

i − Ũ t
i ≥ 0 is possible only if yi ≥ xi, and, by assertion, the set of such players does

not form a winning coalition, which means that y cannot be accepted at this voting stage.
This contradicts that σ is equilibrium, which proves that {i ∈N : yi ≥ xi} ∈W .

It remains to prove that for some i ∈ V , yi > xi and ‖φσ(x)‖ ≤ ‖x‖. Both results im-
mediately follow from the fact that transition to φσ(x) is feasible and is not blocked by
any veto player because of transition cost. Now, by definition of the binary relation �, we
have φσ(x)� x, which completes the proof. Q.E.D.

LEMMA A4: Every protocol-free equilibrium is simple, that is, for every x ∈ A, φj
σ(x) =

φσ(x) for all j ≥ 1.

PROOF: Suppose that there is a protocol-free equilibrium σ that is not simple, which
means that there is x ∈ A such that φ2

σ(x) �= φσ(x). By Lemma A1, σ is acyclic and,
therefore, the path starting from x, φσ(x)�φ

2
σ(x)� � � � , stabilizes after no more than |A|

iterations, and thus its limit φ∞
σ (x) = φ|A|

σ (x) is well defined. Denote the set of all such
x ∈ A by Y , so

Y = {
x ∈ A :φ2

σ(x) �=φσ(x)
} �= ∅�

Take allocation y ∈ Y such that φ∞
σ (y) = φ2

σ(y) (notice that such y exists: indeed, if we
take any x ∈ Y and the minimal number such that φ∞

σ (x) = φj
σ(x) is j > 2, then we can

take y = φj−2
σ (x)). Notice that we must have

∑
i∈V [φ2

σ(y)]i >
∑

i∈V [φσ(y)]i, for otherwise
the transition from φσ(y) to φ2

σ(y) would be blocked by some veto player due to the cost
of transition.

Consider veto player l for whom [φ2
σ(y)]l > [φσ(y)]l. Suppose that in period t where

the status quo is y , protocol π = (l) is realized. Since σ is protocol-free, this must imply
that player l proposes alternative allocation φσ(y) and some feasible transfers ξ, and
this proposal is subsequently accepted. Now suppose that protocol π ′ = (l� l) is realized
and suppose that the game reached the second stage of the protocol. This subgame is
isomorphic to one where protocol π has just been realized; consequently, in equilibrium,
it must be that φσ(y) is proposed, accompanied with transfer ξ, and is accepted.

Let us prove that if in the second stage, the society decides to move to φσ(y), then
in the first stage player l would be better off proposing φ2

σ(y) and some feasible vector
of transfers ξ̃, which would be accepted. Notice that in the following period, a transition
from φσ(y) to φ2

σ(y) would take place, which means that each player would receive a
certain expected vector of transfers ξ. On the other hand, if transition to φ2

σ(y) takes
place in the current period, then the next period would have no transition, and in expec-
tation, each veto player would get a transfer ε

v
(since each of them is equally likely to be

the last player, who would be able to get the entire budget ε with probability 1). Notice
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that

‖ξ‖ + ‖ξ̃‖ ≤
(

max
(∑

i∈V

[
φσ(y)

]
i
−

∑
i∈V

yi�0
)

+ 1
)
ε

+
(

max
(∑

i∈V

[
φ2

σ(y)
]
i
−

∑
i∈V

[
φσ(y)

]
i
�0

)
+ 1

)
ε

≤
(∑

i∈V

[
φ2

σ(y)
]
i
−

∑
i∈V

yi + 2
)
ε�

Take some small value α > 0 and define vector χ by χi = ξi + ξ̃i − ε
v
I{i ∈ V } + αi, where

αi = −α for i �= l and αl = (n− 1)l. Then ‖χ‖ ≤ (
∑

i∈V [φ2
σ(y)]i −

∑
i∈V yi + 1)ε and χi ≥ 0

for all i (for i = l this is true because ξl > 0), so χ is a feasible vector if a transition
to φ2

σ(y) is proposed. If player l proposes such a transition to φ2
σ(y) and offers feasible

vector χ, then all players i ∈ N who have [φ2
σ(y)]i ≥ [φσ(y)]i must prefer such a transi-

tion to φ2
σ(y) to happen rather than not. But since the transition from φσ(y) to φ2

σ(y)
would happen in a period starting with φσ(y), Lemma A3 implies φ2

σ(y) � φσ(y), but
this implies that the set of players who are better off if φ2

σ(y) is accepted at the first stage
is a winning coalition. This means that φ2

σ(y) would be accepted if proposed, which im-
plies that player l has a profitable deviation. This is a contradiction that completes the
proof. Q.E.D.

LEMMA A5: If σ is a simple protocol-free MPE, then for all x ∈ A either φσ(x) = x or
φσ(x)� x.

PROOF: By Lemma A1, σ is acyclic, and by Lemma A4, it is simple. Then for any x ∈ A,
we must have φ2

σ(x) = φσ(x). Now if φσ(x) = x, the result is automatically true, and if
φσ(x) �= x, then it follows immediately from Lemma A3. Q.E.D.

LEMMA A6: Suppose that protocol-free MPE σ is played, and suppose that in period t,
xt−1 = x. Then if there exists y ∈ A such that φσ(y) = y and y � x, then x cannot be stable:
φσ(x) �= x.

PROOF: Suppose, to obtain a contradiction, that φσ(x) = x. Let l be a veto player
such that yl > xl (such l exists as y � x). Consider protocol π = (l) (or any protocol
ending with l). If a proposal made in this period is rejected, then each player i gets Ũ t

i =
xi

1−β
+ β

1−β
ε
v
I{i ∈ V }.

Suppose player l makes proposal (y�ξ), where ξi = (‖y‖−‖x‖+1)ε−δ

n
. Since ‖y‖ − ‖x‖ ≥ 1

and δ < ε, we have ξi ≥ 0 for all i ∈ N , so ξ is a feasible transfer. This means that each
player i for which yi ≥ xi would get yi

1−β
+ ξi + β

1−β
ε
v
I{i ∈ V } if the proposal is accepted,

which exceeds Ũ t
i that he would get if the proposal is rejected. Since y � x, such players

form a winning coalition, which implies that the proposal (y�ξ) would be accepted if
made. Then player l has a profitable deviation, which is impossible. This contradiction
completes the proof. Q.E.D.

PROOF OF PROPOSITION 2: Part 1. Take any simple protocol-free MPE σ and let Sσ =
{x ∈ A : φσ(x) = x}. By Lemma A1, it is nonempty. Let us prove that it satisfies internal
stability. Suppose that for some x� y ∈ Sσ , we have y � x. Then by Lemma A6, φσ(y) =
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y implies φσ(x) �= x, which contradicts that x ∈ Sσ . This contradiction proves that Sσ

satisfies internal stability.
Let us now show that Sσ satisfies external stability. Take x /∈ Sσ . Then by Lemma A5,

φσ(x)� x. Since σ is simple, φσ(x) ∈ Sσ , which shows that there exists y ∈ Sσ such that
y � x. This proves that Sσ satisfies external stability. This proves that Sσ is von Neumann–
Morgenstern-stable set. Q.E.D.

LEMMA A7: If σ is a protocol-free MPE, then ‖φσ(x)‖ = ‖x‖ for all x ∈ A.

PROOF: Suppose not. Then there exists x ∈ A for which ‖φσ(x)‖ < ‖x‖. Since σ is sim-
ple by Lemma A4, we have φσ(x) ∈ S. Take some veto player l and consider the protocol
π = (l); at this stage, player l must propose φσ(x) and it must be accepted. Notice, how-
ever, that player l may propose allocation y that has yl = [φσ(x)]l + 1 and yi = [φσ(x)]i
for all i �= l, and split the extra ε of available transfers equally among players. By Propo-
sition 3, such allocation y is stable as well. Consequently, all players would be strictly
better off from proposal y (with the corresponding transfers) than the equilibrium pro-
posal φσ(x). Thus, if a winning coalition was weakly better off from supporting φσ(x), it
is strictly better off supporting y . Thus, player l has a profitable deviation at the proposing
stage, which is a contradiction that completes the proof. Q.E.D.

PROOF OF PROPOSITION 1: Part (i). Consider the unique von Neumann–Morgenstern-
stable set for dominance relation �, S (its existence and uniqueness follow from Propo-
sition 3 proven in the main text). Take any mapping φ such that φ(x) = x for any x ∈ S
and for any x /∈ S, φ(x) ∈ S and φ(x)� x (the existence of such a mapping follows from
external stability of mapping S implying that for any S, we can pick such φ(x) ∈ S) and,
moreover, ‖φ(x)‖ = ‖x‖ (the existence of such φ follows from Proposition 3 as well,
as otherwise one can add ‖x‖ − ‖φ(x)‖ units to some veto player and get an allocation
in S with the required property). Let us prove the following (stronger) result: there is a
protocol-free MPE σ such that φσ =φ (notice that σ will in this case be simple, because
φ2 = φ.)

We construct equilibrium σ using the following steps. For each possible status quo
x ∈ A and each protocol π ∈ Π, we define transfers that each player is supposed to get in
that period. We use allocations and these transfer utilities to define continuation utilities.
After that, we use these continuation utilities to define strategies players would use for
each x ∈ A and each π ∈ Π. We then check that under these strategies, players indeed get
the transfers that we defined, and no player has a one-shot deviation. This would prove
that σ is MPE, which would be protocol-free by construction.

If x /∈ S, then let Vx = {i ∈ V : [φ(x)]i = xi} and let vx = |Vx|. Furthermore, let Z =∑
i∈V [φ(x)]i −∑

i∈V xi > 0. Let l = π|π| be the last proposer, and define transfers ξi(x�π)
as

ξi(x�π) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if i /∈ Vx ∪ {l}�
β

Zε

(1 −β)v +βvx
if i ∈ Vx \ {l}�

(Z + 1)ε−
∑
j �=l

ξi(x�π) if i = l�

(A3)

If, however, x ∈ S, then the transfer is defined as ξl(x�π) = ε for l = π|π| and ξi(x�π) = 0
otherwise. Given these transfers, the continuation utilities (at the beginning of the period,
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before protocol is realized) are given by

Vi(x) = [
φ(x)

]
i
+

∑
π∈Π

ξi(x�π)+ β

1 −β

([
φ(x)

]
i
+ ε

v
I{i ∈ V }

)
� (A4)

Let us now define strategies as follows. Suppose that in period t, the current status quo
is x= xt−1 and protocol π was realized. To define strategies, consider the game with timing
from Section 2, but define payoffs in case transition to some y ∈ A and set of transfers ξ
is decided upon given by

Ui(y�ξ)= yi + ξi +βVi(y)

(in other words, consider the game truncated at the end of the period, that is, a finite
game, but with payoffs coinciding with continuation payoffs of the original game).

Define strategies by proceeding by backward induction, with a few exceptions. In the
last stage, the proposer π|π| proposes to transfer to φ(x) (or to stay, if φ(x) = x), and
offers transfers ξi(x�π). We require that all players who are at least indifferent vote for
this proposal to pass. If any other proposal is made, as well as in all previous stages, we
require that players play any strategies consistent with backward induction, except that
we require that players vote no when indifferent.

Let us show that the players have no incentive to deviate for any strategy that we de-
fined. The one-shot deviation principle applies, so we need to verify that no player has
a profitable deviation at any stage. Now consider the two cases φ(x) = x and φ(x) �= x
separately.

First, consider the case φ(x) �= x. Let us check that at the last stage, it is a best re-
sponse for any player i with [φ(x)]i ≥ xi to accept, which would imply that this proposal
is indeed accepted. Indeed, both accepting and rejecting results in getting the same allo-
cation [φ(x)]i in two periods; thus, if for some player i, [φ(x)]i > xi, then by Lemma A2
he is strictly better off if φ(x) is accepted. Consider a player i with [φ(x)]i = xi. If i /∈ V ,
then he gets transfer ξi(x�π) = 0 if φ(x) is accepted, but he gets the same in the follow-
ing period if the proposal is rejected, which implies that he is indifferent, so supporting
φ(x) is a best response. If i ∈ Vx \ {l}, then he gets the transfer ξi(x�π) if the alternative
is accepted, and it makes him exactly indifferent between accepting and rejecting. Finally,
if i /∈ Vx or i = l, the player is strictly willing to accept. Thus, for all veto players, it is a best
response to support the alternative. Since φ(x) � x, the set of players with [φ(x)]i ≥ xi

is a winning coalition. Finally, ‖φ(x)‖ = ‖x‖, so the transition is feasible. Consequently,
there are best responses that result in φ(x) being accepted.

Taking one step back, let us verify that it is a best response for player l = π|π| to propose
φ(x). First, since he prefers φ(x) to be accepted rather than rejected, he would only
propose an alternative y if this alternative would be accepted at the voting stage. Suppose
there is such an alternative; it suffices to prove that proposing it does not make the player l
better off. By Lemma A2, if [φ(y)]i < [φ(x)]i for some player i, then this player would be
better off if y is rejected. Consequently, for y to be accepted in equilibrium, it is necessary
that [φ(y)]i ≥ [φ(x)]i for a winning coalition of players, in particular, for all veto players
i ∈ V .

Let us prove that [φ(y)]i = [φ(x)]i for all i ∈ V . To do so, suppose it is not the case,
meaning that for some j ∈ V , the strict inequality [φ(y)]j > [φ(x)]j holds. In addi-
tion, notice that ‖y‖ ≤ ‖x‖ since transition to y is feasible, but ‖φ(y)‖ ≤ ‖y‖ (because
transition to φ(y) would be feasible) and ‖x‖ = ‖φ(x)‖ (by assumption that transi-
tion to φ(x) does not result in waste). This implies ‖φ(y)‖ ≤ ‖φ(x)‖, which, together
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with {i ∈ N : [φ(y)]i ≥ [φ(x)]i} ∈ W and [φ(y)]j > [φ(x)]j , implies φ(y) � φ(x). Since
φ(x)�φ(y) ∈ S, this contradicts internal stability of S, which proves that [φ(y)]i = [φ(x)]i
for all i ∈ V .

Notice that for the proposer, player l = π|π|, to prefer transition to y to transition to
φ(x), it must be that yl = [φ(y)]l = [φ(x)]l, for otherwise we would get a contradiction
with Lemma A2. Consider two possibilities. If φ(y)= y , then for player l to be better off,
he needs to get a larger transfer χl > ξl(x�π). However, since all other veto players in Vx

were indifferent between accepting their transfer ξi(x�π) and rejecting, they need to get
at least this transfer as well; since other players need to get χi ≥ 0 as well, such deviation
cannot be profitable. If, however, φ(y) �= y , then φ(y) will be reached in the following
period. Notice that for each i ∈ V it must be that yi ≥ xi, for otherwise this player would
block the transition. This means, in particular, that for players in Vx, xi = yi = φ(xi) =
φ(yi) holds, and they therefore need discounted transfer χt

i + βEχt+1
i ≥ ξi(x�π) + βε

v

so as to be willing to accept. However, since the transfers available over the two periods
are capped at (Z + 1)ε− δ, player l cannot be better off from such deviation. Therefore,
proposing φ(x) at the last stage is a best response.

We now prove that for any proposal z made at the previous stage by player π|π|−1, the
set of players who strictly prefer transition to z do not form a winning coalition. Indeed,
suppose that it is; then by Lemma A2 it must be that for all i ∈ V , [φ(z)]i = zi = yi,
for otherwise we would have φ(z) � y , which would contradict internal stability of S.
This implies that z = φ(z), for otherwise transition from z to φ(z) would be impossible;
furthermore, the set of transfers χ proposed at this stage must coincide with ξi(x�π). If
so, if some player i /∈ V strictly prefers transition to z, this implies that zi > yi for such
a player. However, this would contradict the characterization results from Proposition 3.
This shows that it is a best response for at least n− k+ 1 players to vote against proposal
z, which implies that there is an equilibrium in this subgame where it is not accepted.
Proceeding by backward induction, we can conclude that there is an equilibrium in this
finite game where no proposal is accepted until the last stage, where y is accepted.

Now consider the game with x ∈ S. We allow any strategies, but require that players
vote against the proposal when indifferent. Now, again by backward induction, we can
conclude that if a winning coalition strictly prefers to accept some proposal z, then either
φ(z) � x, which contradicts internal stability of S, or [φ(z)]i = zi = xi for all i ∈ V , in
which case the veto player π|π| that is the last to propose is actually worse off because
of transition cost. Thus, there is an equilibrium in the finite game where no proposal is
accepted, so x remains stable.

Last, it is straightforward to check that if these strategies are played, then in every
period, transfers are given by ξ(x�π) as defined above, and thus the continuation utilities
at the beginning of period with x as the status quo are given by V (x). This means that if
these strategies are played in the original game Γ , no player has a one-shot deviation.
Since by construction the strategies are Markovian and transitions do not depend on the
realization of the protocol, then σ is a protocol-free MPE. Moreover, it is simple and
efficient by construction, which completes the proof of existence of such equilibrium.

Part (ii). Follows from Lemma A1.
Part (iii). Follows from Lemma A4.
Part (iv). Follows from Lemma A7. Q.E.D.

PROOF OF PROPOSITION 4: Part (i). Lemma A5 implies that φ(y) � y; in particu-
lar, for each j ∈ V , [φ(y)]j ≥ yj and for at least one of them the inequality is strict.
Suppose, to obtain a contradiction, that |{j ∈ M \ {i} : [φ(y)]j < yj}| < d − 1. Then
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|{j ∈ M : [φ(y)]j < xj}| < d. But we also have that for each j ∈ V , [φ(y)]j ≥ xj , with at
least inequality strict. This means φ(y) � x, which is impossible, given that x�φ(y) ∈ S.
Now suppose, to obtain a contradiction, that |{j ∈ M \{i} : [φ(y)]j < yj}|> d−1. But then
for at least d agents [φ(y)]j < yj , which contradicts φ(y)� y . This contradiction proves
that |{j ∈ M \ {i} : [φ(y)]j < yj}| = d − 1. It remains to prove that yi ≤ [φ(y)]i < xi. Sup-
pose not, that is, either [φ(y)]i < yi or [φ(y)]i ≥ xi. In the first case, we would have that at
least d agents have [φ(y)]j < yj , contradicting φ(y)� y . In the second case, [φ(y)]i ≥ xi,
coupled with the already established |{j ∈ M \ {i} : [φ(y)]j < yj}| = d − 1, would mean
|{j ∈ M : [φ(y)]j < xj}| = d − 1, and therefore φ(y)� x. This is impossible, and this con-
tradiction completes the proof.

Part (ii). This proof is similar to the proof of internal stability in the proof of Proposi-
tion 3. Denote φ(y) = z. Then z � y and x�z ∈ S. We know that x and z have the group
structure by Proposition 3. Then let the r groups be G1� � � � �Gr for x and H1� � � � �Hr

for z, respectively. Without loss of generality, we can assume that each set of groups is
ordered so that xGj

and zHj
are nonincreasing in j for 1 ≤ j ≤ r. Suppose, to obtain a

contradiction, that for some agent i′ ∈ M with xi′ ≤ yi < xi, zi′ < yi′ . In that case, among
the set {j ∈ M : xj ≥ xi} there are at most d − 1 agents with zj < yj ; similarly, among the
set {j ∈M : xj < xi} there are at most d − 1 agents with zj < yj .

We can now proceed by induction, similarly to the proof of Proposition 3, and show that
xGj

≤ zHj
for all j. Base: suppose not. Then xG1 > zH1 , and then xG1 > zs for all s ∈ M .

But this means that for all agents l ∈ G1, we have xl > zl; since their total number is d,
we get a contradiction. Step: suppose xGl

≤ zHl
for 1 ≤ l < j, and suppose, to obtain a

contradiction, that xGj
> zHj

. Given the ordering of groups, this means that for any l, s
such that 1 ≤ l ≤ j and j ≤ s ≤ r, xGl

> zHs . Consequently, for an agent i′′ ∈ ⋃j

l=1 Gl to
have zi′′ ≥ xi′′ , he must belong to

⋃j−1
s=1 Hs. This implies that for at least jd − (j − 1)d = d

agents in
⋃j

l=1 Gl ⊂ M , zi′′ ≥ xi′′ does not hold (denote this set by D). If that is true, it
must be that

⋃j

l=1 Gl includes all the agents in D, including agents i and i′ found earlier,
and, in particular, xGj

≤ yi < xi. But on the other hand, these d agents are not in
⋃j−1

s=1 Hs.
In particular, this implies that for any i′′ ∈ D, zi′′ < xGj

, but xi′ ≥ xGj
, which means zi < xi′ .

But zi ≥ yi by part (i) of this proposition, so yi < xi′ . But this contradicts the way we chose
i′ to satisfy xi′ ≤ yi < xi. This proves that such i′ cannot exist, and thus the d − 1 agents
other than i who are made worse off satisfy xj ≥ xi. Q.E.D.

PROOF OF PROPOSITION 5: This result immediately follows from the formulas m =
n− v, d = n− k+ 1, and r = �m/d, and from Proposition 3. Q.E.D.

PROOF OF PROPOSITION 6: Part (i). If k < n, then d > 1. An allocation x is stable only
if |{j ∈ M : xj > 0}| is divisible by d. If x is stable and some agent i with xi > 0 is made a
veto agent, then the set |{j ∈ M ′ : xj > 0}| = |{j ∈ M : xj > 0}| − 1 and is not divisible by
d; thus x becomes unstable. At the same time, if xi = 0, then the group structure for all
groups with a positive amount is preserved; thus x remains a stable allocation.

Part (ii). In this case, the size of each group in x is d > 2, and every positive amount is
possessed by either no players or d non-veto players. If k increases by 1, d decreases by 2.
Then allocation x becomes unstable, except for the case x|M = 0. Q.E.D.
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A2. EXAMPLES

In the examples below, we do not explicitly consider costs of transition and transfers
explicitly, as they would complicate the exposition. Unless specified otherwise, each of
the examples below may be modified to accommodate such factors.

EXAMPLE A1—If Costs of Transition Are Assumed To Be 0: Suppose n = 3, v = 1,
and k = 2, so there are three players, one of them a veto player, and the rule is simple
majority rule. Assume for simplicity that there is only 1 unit that initially belongs to a non-
veto player (say, player #1), so the initial allocation is (1�0;0). Then there would be an
equilibrium where the veto player (proposing last) would propose to move the unit from
player #1 to player #2 if it belongs to player #1, and then propose to move it the other
way around if it belongs to player #2. Such a proposal would then be supported by the
veto player and the other player who receives the unit.

To complete the description of strategies, we can also assume that any proposal made
at a protocol stage before the last one, except for the proposal to transfer the good to
the veto player, would be vetoed by the veto player (he is indifferent anyway). On the
other hand, if a proposal to transfer the unit to the veto player is ever made, the two non-
veto players vote against this proposal. They both have incentives to do so, because the
equilibrium play gives them the unit in possession every other period, which is better than
having the unit taken away.

Thus, without transaction costs, it is possible to have cyclic equilibria, which do not
seem particularly natural.

EXAMPLE A2—Example Where Non-Veto Player Proposes Last: Suppose n = 11, v =
1, and k = 9, so there are 11 players, one of them a veto player, and the rule requires
agreement of 9 players. The size of a minimal blocking coalition is then three. In this case,
in any protocol-free MPE (where the last proposal is done by the veto player), allocation
(3�3�3�2�2�2�1�1�1�10;0) is unstable, and, in any equilibrium, it results in a transfer to
an allocation where all players except for player #10 (the one possessing 10 units in the
beginning of the game) are better off. To simplify the following argument, let us focus
on the equilibrium where an immediate transition to (3�3�3�2�2�2�1�1�1�0;10) takes
place.

Consider, however, what would happen if a protocol has a non-veto player propose
last. Specifically, suppose the protocol has two players: first the veto player (player #11)
proposes and then the non-veto player #6 proposes. Consider the last stage and suppose
that player #6, instead of proposing to move to (3�3�3�2�2�2�1�1�1�0;10) or to stay
in the current allocation (3�3�3�2�2�2�1�1�1�10;0), proposes to transfer to allocation
(3�3�1�2�2�3�1�1�2�4;6); in other words, in addition to moving some units to the veto
player, he also proposes to take 2 units from player #3, and takes 1 unit himself and
gives the other one to player #9 in order to “buy” his vote. This proposal leads to a
stable allocation, and it makes only two players (player #3 and player #10) worse off. It
therefore would be accepted; the veto player would agree, because it gives him 6 of the
units right away, and he would be able to get the other 4 the following period. (Notice
that player #4 might prefer not to get more units for himself in the short run, out of fear
that having 4 or more units in the next period would make him a candidate for complete
expropriation.)

Taking one step back and consider the stage where the veto player makes the pro-
posal. He would use the opportunity to get the 10 units belonging to him immediately
(which hurts player #10). However, he would not be able to make the society move to
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(3�3�3�2�2�2�1�1�1�0;10), which they are supposed to do in equilibrium, because do-
ing so would make players #6 and #9, in addition to #10, worse off, and thus such a
proposal would not gather the 9 votes needed to pass. This means that by allowing non-
veto players to propose, in some examples we would lose the existence of protocol-free
MPE.

This example relies on the fact that non-veto players are not indifferent between dif-
ferent stable allocations, and would want to make the society reallocate the units in their
favor. As the results in this paper show, these moves cannot happen in protocol-free equi-
libria studied in the paper. Consequently, we do not view such a possibility to be natural
or robust, and we impose the assumption that non-veto players cannot be the last ones in
a protocol to avoid such issues and obtain the existence of protocol-free equilibria.

EXAMPLE A3—Example With Fixed Protocol: Suppose n = 3, v = 1, and k = 2, so
there are three players, one of them a veto player, and the rule is simple majority.
Consider the allocation (1�1;0), where the veto player possesses nothing initially. In a
protocol-free equilibrium, this allocation would be stable.

Consider a game where the protocol is fixed at π = (1�3) in each period (we can allow
the second player to propose in between the other two and get the same result). We claim
that the following transitions are possible in an equilibrium. Player #1 is recognized first,
and he proposes to move to (1�0;1), which is supported by him and the veto player, and
in the following period the veto player gets all the surplus, as usual. If the proposal by
player #1 is rejected, however, then player #3 is recognized and proposes to move to
(0�1;1), and this proposal is supported by himself and player #2. Thus, in equilibrium,
the society moves from (1�1;0) to (1�0;1), and then to (0�0;2).

The reason why this example works is the following. Player #1 knows that if he does
not promise the veto player a transfer of 1 unit, then he would lose his possession imme-
diately (later the same period), whereas delivering the unit to the veto player allows him
to postpone for another period. The veto player knows that he cannot take both units at
once (as players #1 and #2 would like to stick to them for another period); however, if he
allows player #2 to keep his unit, the latter would not mind participating in expropriation
of player #1, because in either case he keeps his unit for the current period and loses it in
the following one, along the equilibrium path. Furthermore, if these strategies are played,
preserving the status quo (1�1;0) is not an option. Thus, there is an equilibrium where
non-veto players participate in expropriation of each other.

Notice that this transition (from (1�1;0) to (1�0;1)) cannot arise in a protocol-free
equilibrium for the following reason. Suppose the protocol only involves the veto player.
In such an equilibrium, he needs to propose to transit to (1�0;1). But player #2 will
oppose it for obvious reasons, and player #1 would know that if he agrees, then he keeps
his unit for one extra period (the current one), but if he rejects, then in protocol-free MPE
he faces the same transition to (1�0;1) the following period, and thus he would be able
to keep the unit for two extra periods, which he obviously prefers. Consequently, such
transition would be impossible in this protocol, which contributes to the idea that such
transitions are not particularly robust.

EXAMPLE A4—Example of Equilibrium That Is Not Markov Perfect: Suppose n = 3,
v = 1, and k = 2, so there are three players, one of them a veto player, and the rule is
simple majority. Consider the allocation (1�1;0), where the veto player possesses nothing
initially.

Suppose that the veto player is always the proposer, so the protocol is π = (3). Then
the following transitions may be supported in equilibrium. As long as the allocation is
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(1�1;0), the veto player proposes to move to (1�0;1) if the period is odd and to move to
(0�1;1) if the period is even, and the proposal is supported by him and by the non-veto
player who keeps the unit (player #1 in odd periods and player #2 in even periods). Once
this transition has taken place, in the following period, the veto player gets everything,
thus moving to (0�0;2).

The rationale for non-veto players to support such proposals is that they get to keep
their unit for exactly one extra period, regardless of the outcome of the voting. Thus, they
are indifferent in such situations, in which case the veto player is able to allocate a small
transfer to break this indifference. As a result, there is a SPE where the society moves to
(1�0;1) and then to (0�0;2); it is supported by the threat of a move to (0�1;1) (and then
again to (0�0;2)) if this proposal is rejected.

Two comments are warranted. First, this SPE does not require knowledge of all his-
tory, in particular, players’ proposals and votes. It only requires that the veto player acts
differently in odd and even periods. In particular, this is a dynamic equilibrium (DE) in
the sense of Anesi and Seidmann (2015), as if the players are allowed to condition their
moves on the past history of alternatives, they of course can make use of the length of this
history. Second, such transitions are impossible in a protocol-free equilibrium. Indeed,
the proposal to move to (1�0;1) made by the veto player would not be accepted if player
1 knew that the veto player would make this very proposal again in the following period,
rather than proposing (0�1;1).

EXAMPLE A5—Example With Random Recognition of Players but Without Protocol-
Free Requirement: Suppose n= 5, v = 2, and k = 3, so there are five players, two of them
veto players, and the rule is simple majority. Consider the allocation (1�1�1;0�0), where
the veto players possess nothing initially. In a protocol-free equilibrium, this allocation
would be stable.

Consider a game, where in each period, one player is recognized as the proposer. Fur-
thermore, assume for simplicity that only veto players may be recognized, and each of
them is recognized with probability 0�5. Then the following strategies would form a MPE.
Suppose that player #4, if he is the agenda-setter, proposes to move to (2�0�0;1�0), and
this proposal is supported by the two veto players and player #1. Similarly, if player #5
gets a chance to propose, he proposes to move to (0�2�0;0�1), which is supported by the
two veto players and player #2. If either of the proposals is accepted, then in the following
period the society moves to (0�0�0;2�1), where the veto players possess everything.

To understand why player #1 supports the transition to (2�0�0;1�0), notice that in this
case, he gets payoff 2 in the current period and 0 thereafter. If he rejects, then he keeps
1 in the current period, but in the next period he faces a lottery between 2 and 0, and
gets 0 thereafter. His expected continuation payoff is therefore 1 + β 2+0

2 = 1 + β < 2.
Consequently, he prefers to agree on the transition to (2�0�0;1�0). For the same reason,
player #2 would support the transition to (0�2�0;0�1). Notice that neither of the veto
players can do better by choosing some other proposal, and therefore these transitions
are possible in equilibrium.

Notice that if we impose the requirement that equilibria be protocol-free, which in this
case would mean that the transition is the same regardless of the player who gets to make
the proposal, such an equilibrium will be ruled out. Thus, the requirement that equilibria
do not depend on the protocol is important for our results, but also these equilibria may
be considered more robust than the one in this example.
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A3. RELATION TO LARGEST CONSISTENT SET

We have proven (Proposition 2) that the set of stable allocations coincides with the
vNM-stable set, which is in our case unique. However, as emphasized, for example, in
Ray and Vohra (2015), the vNM has the drawback in that it focuses on “static” deviations,
that is, those in which a deviating coalition does not foresee the future path of the game.
On theoretical grounds, this is a serious objection. One notion to deal with this problem
was the largest consistent set, as defined in Chwe (1994). In what follows, we prove that
in our setting, the largest consistent set would coincide with a vNM-stable set and thus
with the set of stable allocations, that is, the objection concerning farsighted deviation
does not apply to our game. In our view, the intuitive reason for this is that in our game,
any coalition that can make some deviation (i.e., a winning coalition) can also make any
deviation. Coupled with farsightedness (discount factor being high enough), this means
that a coalition that would be better off initiating a long path of changing allocations
would also be better off transiting immediately to the final allocation in this sequence,
and it is also capable of doing so. Thus, allowing for farsighted deviations does not add
profitable deviations at states that did not have such deviations. Below we state this result
formally.

For any coalition X ∈ 2N\{∅}, define binary relation →X on A: for all x� y ∈ A, x →X y
if and only if ‖y‖ ≤ ‖x‖ and either x = y or X ∈ W . In other words, a winning coalition
can enforce transition from any x to any y , as long as y contains fewer units, whereas
a nonwinning coalition can only preserve the same allocation x. Also, for any coalition
X ∈ 2N\{∅}, define binary relation ≺X on A: for all x� y ∈ A, x ≺X y if and only if X ⊂ {i ∈
N : yi ≥ xi} and there is j ∈X ∩ V such that yj > xj .

We say that x is directly dominated by y , and write x < y if there is coalition X such that
x →X y and x ≺X y . We say that state x is indirectly dominated by y , and write x � y if
there exist x0�x1� � � � � xm ∈ A such that x0 = x and xm = y , and X0�X1� � � � �Xm−1 ∈ 2N\{∅}
such that xj →Sj xj+1 and xj ≺Sj y for j = 0�1� � � � �m − 1. We call a set Q ⊂ A consistent
if x ∈ Q if and only if for any y ∈ A and any coalition X ∈ 2N\{∅} such that x →X y there
exists z ∈ Q such that x ⊀X z and either y = z or y � z. From Chwe (1994), it follows
that there is a single largest consistent set, that is, a consistent set P such that for any
consistent set Q, Q ⊂ P . We now prove that P = S, that is, the set of stable allocations is
the largest consistent set.

PROPOSITION A1: The set of stable allocations described in Proposition 3 is a unique
largest consistent set.

PROOF: First, we need two preliminary observations. First, it is obvious that for any
x� y ∈ A, x < y implies x � y . In our setup, however, the opposite is also true, so x < y
if and only if x � y . To see this, suppose that x � y . Take a sequence of states and a
sequence of coalitions that establish indirect dominance x� y . We first notice that ‖x‖ =
‖x0‖ ≥ ‖x1‖ ≥ · · · ≥ ‖xm‖ = ‖y‖, so ‖x‖ ≥ ‖y‖. Furthermore, x0 ≺X0 y implies x �= y , for
otherwise j ∈ X0 ∩V such that yj > xj would be impossible. Let l ≥ 0 be the lowest number
such that xl+1 �= x; it is well defined and satisfies l < m. This means that x →Xl

xl+1,
and since xl+1 �= x, it must be that Xl ∈ W . This also means xl ≺Xl

y , and thus x ≺Xl
y;

however, since Xl ∈ W and ‖x‖ ≥ ‖y‖, we have x →Xl
y . Now x →Xl

y and x ≺Xl
y by

definition imply x < y , which proves the equivalence.
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Second, we prove that x < y if and only if y � x. Indeed, suppose x < y . Then for some
coalition X , x→X y and x ≺X y; the latter implies x �= y , in which case the former implies
X ∈W . Furthermore, x →X y implies ‖y‖ ≤ ‖x‖. We also have X ⊂ {i ∈ N : yi ≥ xi}, and
since X ∈ W , {i ∈ N : yi ≥ xi} ∈ W as well, in which case V ⊂ X , and then X ∩ V is
nonempty, so there is j ∈ V such that yj > xj . This all implies that y � x. Conversely,
suppose y � x. Let X = {i ∈ N : yi ≥ xi}. Then X ∈ W , and since yj > xj for some j ∈ V
and V ⊂ X , then this is true for some j ∈X∩V . This implies that x ≺X y . Now ‖y‖ ≤ ‖X‖
and X ∈W implies x →X y; this means that x < y .

Let us now show that S is consistent.
To show that set S is consistent, take any x ∈ S, and then take any y ∈ A and any X ∈

2N\{∅} such that x →X y . We need to prove that there exists z ∈ S such that x⊀X z and
either y = z or y � z. If y ∈ S, then we can take z = y to satisfy this property, because
x ⊀X z. Indeed, this holds trivially if x = z, and otherwise follows by contradiction: if
x →X y and x ≺X y , then x < y , which implies y � x, but for two allocations x� y ∈ S
this would contradict internal stability by Proposition 3. Thus, consider the case y /∈ S.
Since x ∈ S, we have x �= y and thus X ∈ W . Take any equilibrium σ and any transition
mapping φ = φσ , and let z = φ(y) ∈ S. Notice that it is impossible that this z satisfies
z = y , since y /∈ S. Furthermore, we must have x ⊀X z, for otherwise we would again
contradict Lemma A6 (because ‖z‖ ≤ ‖y‖ ≤ ‖x‖ and then x ≺X z coupled with X ∈ W
would imply z � x). It remains to prove that y � z, for which it suffices to prove that z � y ,
but this follows immediately from Lemma A5. Thus, z ∈ S with the required properties
exists.

Now take some x /∈ S. Let y = φ(x)(again, φ =φσ for some equilibrium σ) and let X =
{i ∈ N : yi ≥ xi}. Then y ∈ S ⊂ A, which implies y �= x; furthermore, y � x by Lemma A5
and thus X ∈ W . We need to prove that there does not exist z ∈ S such that x⊀X z and
either y = z or y � z. Suppose, to obtain a contradiction, that such z exists. Then z �= y ,
because x ≺X y , which is true since y � x. Then we must have x⊀X z and y � z, and the
latter is equivalent to z � y . However, this violates internal stability of set S, which holds
by Proposition 3. This proves that set S is consistent.

Let us now show that S is the largest consistent set. Suppose, to obtain a contradiction,
that set P �= S is the largest consistent set; since S is consistent, we have S ⊂ P . As before,
take some equilibrium transition mapping φ. Take x ∈ P \ S for which ‖x‖V = ∑

j∈V xj

is maximal. Let y = φ(x) and X = {i ∈ N : yi ≥ xi}. Then y ∈ S and x ≺X y . Since P is
consistent, there exists z ∈ P such that x ⊀X z and either y = z or y � z. Notice that
x ⊀X z implies that y �= z, because x ≺X y . Then y � z, which is equivalent to z � y ,
but given that y ∈ S, we must have z /∈ S, for otherwise we would get a contradiction
to Proposition 3. Thus, z ∈ P \ S, which implies, by the choice of x, that ‖z‖V ≤ ‖x‖.
However, we have y � x and z � y; thus each j ∈ V has zj ≥ yj ≥ xj , and for at least one
j, one of the inequalities is strict. This implies that ‖z‖V > ‖x‖V , a contradiction. This
completes the proof that S is the largest consistent set. Q.E.D.

A4. CHARACTERIZATION FOR n= 3�4�5

The following tables contain a summary of stable allocations if the number of players is
small (n = 3�4�5). The nontrivial cases, where non-veto players form groups and protect
each other, are highlighted.
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