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Abstract

Demographers often form estimates by combining information from two data sources—
a challenging problem when one or both data sources are incomplete. A classic exam-
ple entails the construction of mortality rates, which requires death counts for sub-
populations under study and corresponding base population estimates. Approaches
typically entail “back projection,” as in Wrigley and Schofield’s (1981) seminal analy-
sis of historical English data, or “inverse” or “forward projection” as used by Lee (1985)
in his important reanalysis of that work. Our paper generalizes and shows how forward
and backward approaches can be optimally combined, using a generalized method of
moments (GMM) framework. We apply the method to the estimation of mortality
rates for relatively small sub-populations within the U.S. (in particular, birth state by
birth cohort by race by gender cells), combining data from Vital Statistics records and
Census samples.
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1 Introduction

Inference in demography often entails piecing together data from multiple, often incomplete,
sources. A classic example is the estimation of mortality rates, which requires an estimate
of deaths for the population under study and a corresponding estimate of the population at
risk. Wrigley and Schofield’s (1981) classic work, for instance, draws on entries of baptisms,
marriages, and burials in Anglican parish registers to construct “back projection” estimates
of mortality rates for the English population in the 16th through 19th century. Using those
same data, Lee (1985) alternatively constructs mortality estimates using “inverse” or “for-
ward projection.” Variants of these basic approaches have been used in many studies. Often
the required data are available from statistical agencies, as in the empirical work below, in
which we use death records from the Vital Statistics registry, and estimate the population
at risk using Census samples.

Our innovation is to show how researchers can improve inferences about mortality by
optimally combining forward and backward methods using Vital Statistics and Census data.
We illustrate the use of our method by providing estimates of relatively small sub-populations
of the U.S.—cells constructed at the cohort × birth state × race × gender level.

To set the key idea, suppose we are interested in estimating mortality for a particular
group i—for instance, black men born in Georgia in 1932—over a particular time period,
e.g., 1990 through 2000. There are three common demographic methods to do this, one
using Census data only and two which combine Census and Vital Statistics data.

In setting up the Census-only approach, let N90
i be a count of individuals in group i in

1990 and N00
i the corresponding count in 2000. Then, assuming there is no net migration,

10q
C
i =

N90
i −N00

i

N90
i

(1)

gives the 10-year mortality rate. This method works well if complete counts of group i are
available. For example, the 100% Summary Tape Files from the U.S. Census for 1990 and
2000 provide counts of the number of men and women by single year of age by race for
the U.S. as a whole. Birth state (an additional element required for our analysis), however,
was collected only on the “long form,” giving a 1-in-6 sample, and researchers will typically
have access only through Public Use Microsamples (PUMS) to 1-in-20 or 1-in-100 samples,
depending on the Census year. When this is the case, researchers must use estimates of N90

i

and N00
i in (1), leading to the estimator

10q̂
C
i =

N̂90
i − N̂00

i

N̂90
i

, (2)

where S90
i is the sample counts of group i in 1990, N̂90

i = ω90S90
i has ω90 = 20 given the

sampling rate of 1-in-20 in the 1990 PUMS, and, similarly, N̂00
i = ω00S00

i with ω00 = 20.1

1In fact, inflation factors differ in both the 1990 and 2000 Census samples, so our estimator of N̂90
i is

slightly more complicated. For the remainder of the paper we restrict attention to a constant sampling rate
in a Census year, which greatly reduces notation with little loss in insight. When we turn to our empirical
example that has individual-level inflation factors (weights), we use these in forming estimates.
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The Census-only approach is valuable in developing countries where Censuses are largely
complete but Vital Statistics registries are not (or in similar historical circumstances). Lleras-
Muney’s (2005) innovative work uses this estimator in the U.S. to calculate cohort-specific
mortality by state of birth for the purpose of inferring the impact of state education policies
on late-life mortality.

This Census-only method has two clear disadvantages. First, samples used to estimate
N̂90

i and N̂00
i are often quite small, which can lead to imprecise estimation of 10q̂

C
i .

2 Second,
analysts often require annual mortality rates, rather than mortality over a 10-year period.
This method cannot produce such estimates.

The second commonly used method combines Census and Vital Statistics data using
“forward projection.” To estimate the 10-year mortality rate using this method, the re-
searcher counts the number of deaths of group i between 1990 and 2000 and divides by the
corresponding 1990 estimate of the group i population. Thus the forward estimator is

10q̂
F
i =

10D
90
i

N̂90
i

, (3)

where 10D
90
i =

99∑
t=90

Dt
i .
3

The final method, “back projection,” counts the number of deaths of group i between 1990
and 2000 but divides by an alternative estimate of 1990 group i population—the estimated
2000 population plus the number of deaths occurring between 1990 and 2000. Thus the
backward estimator is

10q̂
B
i =

10D
90
i

(N̂00
i + 10D90

i )
. (4)

Either the forward or backward projection method can be used also to estimate annual
mortality rates. For example, the mortality rate from the forward estimator for group i in
1991 is

D91
i /(N̂

90
i −D90

i )

while the backward estimator is
D91

i /(N̂
00
i + 9D

91
i ).

An important use of the difference between the forward and backward projection esti-
mates is to assess the quality of Census or Vital Statistics data. For example, Palloni and
Kominski (1984) use the difference in the two estimators to assess the incompleteness of Vital
Statistics data in several Latin American countries. An under-appreciated possibility is that
even when data quality is high, 10q̂

F
i and 10q̂

B
i will differ because of sampling variation. Such

differences become larger the smaller is the size of subpopulation i—clearly a concern in our

2Indeed, using this method Lleras-Muney (2005) reports a non-negligible proportion of mortality estimates
for birth state × cohort cells imply negative mortality.

3As a practical matter, given the timing of the Census, Dt
i is the count of number of deaths of group i

between April 1, year t and March 31, year t + 1. 10D
90
i is thus the number of deaths of group i between

April 1, 1990 and March 31, 2000.
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example, as we can expect to encounter small sub-populations when we estimate mortality
for such groups as black men born in Georgia in 1932.

Without a formal statistical theory it is not clear what researchers should do with two
consistent but differing estimates of group i mortality. A naive approach would be to take
a simple average of the two. Below we provide theoretical arguments that show why this
approach can work well for some applications (and Hsu (2012) provides empirical examples
in which this approach does indeed work well). More importantly, we show how this naive
estimator is related to an efficient generalized method of moments (GMM) estimator. We do
this to clarify why equal weighting is sometimes effective, and also to highlight circumstances
under which a researcher would want to weigh one of the two estimators more heavily. Our
GMM estimator produces optimal weights, and these weights turn out to have intuitively
appealing properties.

In Section 2 of our paper we show that the naive estimator is actually the solution
to a minimum distance (MD) estimator. The MD estimator then generalizes to a two-
step estimator—a generalized method of moments (GMM) estimator first proposed in the
seminal work of Hansen (1982). For interest sake, we also formulate a constrained maximum
likelihood (ML) estimator for the problem at hand and demonstrate a close relationship
between the GMM and ML approaches in the Appendix.

In Section 3 of our paper we turn to an illustration: racial differences of the mortality of
men born in the Great Depression by state of birth in later life. We show that conditioning
on the state of birth greatly improves the accuracy of the regression model regardless of the
estimator used. We find strong evidence that black-white mortality differences increased,
results driven by the improvement in Southern white mortality. Indeed, we cannot reject the
hypothesis that for blacks and whites born in the North, there was no increase in black-white
mortality gaps.

In Section 4 we provide concluding remarks.

2 Estimating Mortality Using Two Data Sources

Our problem is conceptually quite simple. Suppose that in an initial period, designated
period 0, we have a Census dataset that randomly samples a population of N0 individuals
using a known sampling rate, say 1 in ω0.4 In period 1 we similarly have a Census that
samples at a rate of 1 in ω1. Estimates of the population sizes for subset i in period 0 and
1 are just

N̂0
i = ω0S0

i and N̂1
i = ω1S1

i . (5)

4We denote the first Census as 0 and the second as 1 to make the discussion general and to save on
notation. As noted above, period 0 is 1990 and period 1 is 2000. Again, for ease of exposition, we assume
that sampling weights do not vary within period, though we do use Census sampling weights in our estimation
below.
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We have already defined the Census-only estimate of mortality rate for group i,

T q̂
C
i =

(N̂0
i − N̂1

i )

N̂0
i

, (6)

where T is the length of time between period 0 and period 1. As we suggest in the introduc-
tion, estimator (6) is likely to be quite noisy when samples are small. We can do much better
if we replace the numerator in (6) with the proper death count from Vital Statistics over
the time T , which we denote TDi. As for the denominator of (6), we could use N̂0

i estimated
with period 0 Census data, in which case we have a forward estimator. Alternatively, we
can exploit a direct relationship, N0

i = N1
i + TDi,

5 and form a backward estimator with the
denominator N̂1

i + TDi instead of N̂0
i . Either approach to estimating the denominator, N0

i ,
is likely to be noisy; intuitively, one would like to use both pieces of information in forming
inferences.

Our problem, then, is to combine the data to find the best estimate of the number of
individuals of type i in time 0 for use in the denominator of our estimator, i.e., the consistent
estimator that minimizes asymptotic variance. We start with a simple, intuitively sensible
minimum distance estimator.

2.1 A Minimum Distance Estimator

In constructing our estimate of the size of the group i population, N0
i , we use the relationships

E
{
ω0S0

i −N0
i

}
= 0,

E{ω1S1
i + TDi −N0

i } = 0. (7)

The expressions in (7), which involve expectations, are often called moment restrictions.6

Given that our goal is to find estimators that fit equations (7) “well,” an intuitively attractive
idea is to find value N̂0,MD

i that minimizes the expression,[
N0

i − ω0S0
i N0

i − ω1S1
i − TDi

] [ 1 0
0 1

] [
N0

i − ω0S0
i

N0
i − ω1S1

i − TDi

]
. (8)

To find this minimum distance estimator, we simply solve the problem,

min
N0

i

V =
(
N0

i − ω0S0
i

)2
+
(
N0

i − ω1S1
i − TDi

)2
. (9)

5In general, N0
i = N1

i + TDi + TEi where when i is defined by state of birth the net emigration of the
group TEi ≈ 0; if a black born in Georgia migrates to New York he appears in New York but his state of
birth is still recorded as Georgia. It is only net emigration out the U.S. entirely that creates an issue for our
estimation below, which focuses on birth state. The problem is considerably more difficult if groups were
defined by state of residence. In this case it would be necessary to estimate state-to-state net migration of
group i to calculate our base estimates.

6Our restrictions assume that TDi, the death counts for individuals in group i, have been accurately
recorded in Vital Statistics records. If this number is thought to be recorded with error, and the error
process can be modeled, we would instead have three moment restrictions.
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V is a strictly convex function of N0
i that has a first-order condition,

dV

dN0
i

= 2
(
N̂0,MD

i − ω0S0
i

)
+ 2

(
N̂0,MD

i − ω1S1
i − TDi

)
= 0, (10)

which leads to the resulting estimator,

N̂0,MD
i =

1

2

(
ω0S0

i

)
+

1

2

(
ω1S1

i + TDi

)
. (11)

The minimum distance estimator is simply the average of the two potential Census estimators
proposed above. Because the samples are approximately independent (only about 0.0025 of
the population will appear in two consecutive 1-in-20 PUMS), we stand to gain a great deal
of efficiency by using two samples to construct our estimate of N0

i .
With our estimator of N0

i in place we can easily construct our mortality rate estimate.
Let T qi be the mortality rate for group i between time 0 and time 1. Our estimator of this
object, based on the minimum distance (MD) approach, is simply

T q
MD
i =

TDi

N̂0,MD
i

, (12)

i.e., the ratio of the observed deaths to our minimum distance estimate of the number of
people in group i who were alive at time 0.

This clearly is a consistent estimator, and it has the advantage of using all available
data in a simple and coherent way. The estimator is easy to implement, e.g., with simple
commands in any statistical package or spreadsheet program. An important paper by Hansen
(1982), though, establishes a generalization of the MD estimator that has optimal properties,
in terms of minimizing the estimator’s asymptotic variance. We turn to that estimator next.

2.2 A GMM Estimator

The idea of Hansen’s generalized method of moments (GMM) estimator is to undertake a
minimization exercise, such as the one given in (8), but in which the matrix in the interior
of (8) is not the identity matrix, but rather a 2× 2 symmetric matrix, W−1, the inverse of
the covariance matrix from the vector of “moment restrictions,” which in our case is

W = E

{[
N0

i − ω0S0
i

N0
i − ω1S1

i − TDi

] [
N0

i − ω0S0
i N0

i − ω1S1
i − TDi

]}
=

[
(ω0)

2
S0p0i (1− p0i ) 0

0 (ω1)
2
S1p1i (1− p1i )

]
, (13)

where p0i and p1i are, respectively, the probability in period 0 that an observation from the
complete sample S0 is a member of group i, and the analogous probability in period 1.7 The

7Put another way, p0i =
N0

i

N0 and p1i =
N1

i

N1 . We of course do not directly observe p0i or p1i , since N0
i and

N1
i are unknown.
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terms in W are easy to find as our particular problem entails draws from two independent
binomial processes.8 Hansen proves that the use of W−1 is optimal in terms of minimizing
the asymptotic variance of the estimator.

As we do not know the values of [p0i , p
1
i ] in advance, we cannot simply substitute W−1

for the 2 × 2 identity matrix in equation (8), and proceed with the minimization problem.
Instead, Hansen (1982) suggests a two-step estimator. The first step is the simple minimum
distance estimation given in Section 2.1 above. The idea is to use the estimator (11) to
consistently estimate [p0i , p

1
i ], and to use those to estimate the covariance matrix. Thus we

form Ŵ−1 using equation (13), but replacing each p0i and p1i with our estimates, p̂0i and p̂1i .

The second step then entails finding the value N̂
0,GMM

i that minimizes

[
N̂0,GMM

i − ω0S0
i N̂0,GMM

i − ω1S1
i − TDi

] [ (ω0)2S0p̂0i (1− p̂0i ) 0
0 (ω1)2S1p̂1i (1− p̂1i )

]−1

×[
N̂0,GMM

i − ω0S0
i

N̂0,GMM
i − ω1S1

i − TDi

]
, (14)

which yields the necessary condition,

N̂0,GMM
i − ω0S0

i

(ω0)2S0p̂0i (1− p̂0i )
+
N̂0,GMM

i − ω1S1
i − TDi

(ω1)2S1p̂1i (1− p̂1i )
= 0. (15)

Following a series of algebraic steps we can show that the resulting estimator is

N̂0,GMM
i =

[
((ω0)2S0p̂0i (1− p̂0i ))

−1

((ω0)2S0p̂0i (1− p̂0i ))
−1

+ ((ω1)2S1p̂1i (1− p̂1i ))
−1

]
ω0S0

i

+

[
((ω1)2S1p̂1i (1− p̂1i ))

−1

((ω0)2S0p̂0i (1− p̂0i ))
−1

+ ((ω1)2S1p̂1i (1− p̂1i ))
−1

] (
ω1S1

i + TDi

)
. (16)

Notice that as in (11), we are using a weighted sum of two consistent estimators of N0
i for

our estimator, but in the GMM case we use asymptotically optimal weights, which include
objects that are estimated in the first stage of the estimation procedure.

Finally, having found the GMM estimate of N0
i , our estimate of the mortality rate for

group i from time 0 to time 1, based on the GMM approach, is

T q
GMM
i =

TDi

N̂0,GMM
i

. (17)

To build intuition for this estimator, consider the case in which the inflation weights are

8Conceptually, the Census finds the entire population, and samples a fraction of these individuals for
public use releases. Then, for example, in period 0 each of these individuals has a p0i probability of belonging
to group i and a 1−p0i probability of being in some other group. Estimates of the first moment have variance
S0p0i (1− p0i ).
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the same in the two consecutive Census periods, ω0 = ω1 = ω. Then (16) reduces to

N̂0,GMM
i =

[
(p̂0i (1− p̂0i ))

−1

(p̂0i (1− p̂0i ))
−1

+ (p̂1i (1− p̂1i ))
−1

]
ωS0

i

+

[
(p̂1i (1− p̂1i ))

−1

(p̂0i (1− p̂0i ))
−1

+ (p̂1i (1− p̂1i ))
−1

] (
ωS1

i + TDi

)
. (18)

Given this expression, consider two cases:
First suppose p̂0i ≈ p̂1i . This approximation applies when mortality is very low for group i.

In this case, the weights (in brackets) are approximately 1
2
; the two estimates of N0

i are given
roughly equal weight. That is

N̂0,GMM
i ≈ 1

2

[
ωS0

i +
(
ωS1

i + TDi

)]
. (19)

It is easy to show how this relates the forward and backward mortality estimators. If (19)
were to hold exactly,

T q
GMM
i =

TDi

N̂0,GMM
i

=
TDi

1
2

(ωS0
i + ωS1

i + TDi)

=

[ 1
2
ωS0

i
1
2

(ωS0
i + ωS1

i + TDi)

]
TDi

ωS0
i

+

[ 1
2

(ωS1
i + TDi)

1
2

(ωS0
i + ωS1

i + TDi)

]
TDi

ωS1
i + TDi

=

[
ωS0

i

ωS0
i + ωS1

i + TDi

]
T q̂

F
i +

[
ωS1

i + TDi

ωS0
i + ωS1

i + TDi

]
T q̂

B
i .

As mortality is low in our example, TDi is small relative to N0
i , and in turn ωS0

i ≈ ωS1
i . So

in this case our GMM estimate is very close to

T q
GMM
i ≈

(
T q

F
i + T q

B
i

)
2

,

i.e., the simple average of the forward and backward estimators.
Next, consider the opposite case, in which p̂1i has declined nearly to 0. This happens when

the cohort has nearly become extinct, which would be most common at very old ages. In
this case, careful inspection of (18) shows that the GMM estimator places a weight slightly
less than 1 on the second term, and a weight slightly greater than 0 on the first term.

In short, we have a somewhat counterintuitive result: When the Census uses the same
sampling scheme in two consecutive periods, and estimators are formed using complete death
counts (from Vital Statistics), the weight given the first Census sample (period 0) will never
be greater than 1

2
, even though the Census count for the sub-population in period 0 is larger

than in period 1. Moreover, when the sub-population is substantially smaller in period 1
than in period 0, as is typical at older ages, the weight given to the period 1 Census increases.

The proper intuition for the result comes from focusing on the extreme case, in which
all individuals in a cohort have died. In this important case our estimator converges to
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“extinct generation estimation”—a methodology used in many important papers, e.g., Elo
and Preston (1994).9 Given our assumption that death counts in the Vital Statistics are
accurate, for a cohort that is extinct in period 1 we can form a perfect estimate the number
of people who were alive in period 0 simply by counting recorded deaths between the two
periods. In this case the imperfect information from the period 0 Census can be entirely
disregarded. With this intuition in place, now notice that as a cohort near extinction, S1

i

approaches 0 (and will typically be much smaller than TDi for typical sampling rates), so the
GMM procedure effectively places progressively higher weight on the death counts, relative
to Census samples, as a means of determining the base with which to estimate mortality (in
(17)).

As we have noted, use of the Vital Statistics data allows researchers to estimate annual
mortality rates. There is, of course, no Census estimate of the population in intercensal
years, but we can construct an estimate using this simple difference equation:

N̂ t+1
i = N̂ t

i −Dt
i (20)

where N̂ t
i is a population estimate obtained from the GMM, backward, or forward estimate

of the population. This difference equation does imply that errors in measurement will be
correlated across birth state by cohort cells so standard errors should be clustered to account
for such correlation.

3 Application

Our application entails the estimation and analysis of men’s mortality in mid-life—ages
approximately 51 to 70—by sex, race, and birth state, for people born during the 1930s. To
put this work in context, we mention two important strands of literature.

First, a vast literature focuses on black-white disparities in health outcomes—including
mortality—in the twentieth century. Measured in terms of life expectancy, racial disparity
has decreased over the century, but remains high. According to recent life tables produced
at the Division of Vital Statistics (Arias, 2010), the gap in life expectancy at birth between
whites and blacks born in the U.S. declined from 10.4 years for cohorts born 1919-1921 (with
life expectancies of 57.4 for whites and 47.0 for blacks) to a historic low of 5.0 for the cohort
born in 2006 (78.2 for whites and 73.2 for blacks).10

There are many proximate medical causes for the mortality gap, including black-white
disadvantages in mortality due to diseases of the heart, cancer, cerebrovascular disease,
diabetes mellitus, and pneumonia and influenza (e.g., Levine, et al., 2001). Importantly, for
our purposes, the incidence of life-threatening disease (and other threats, such as violence)
varies substantially across local areas in the U.S. For example, in a seminal paper, McCord
and Freeman (1990) estimated the rate of survival beyond the age of 40 for black men in

9Elo and Preston provide reference to Vincent’s (1951) seminal use of this method.
10These estimates are from period life tables, which calculate life expectancy for a hypothetical cohort

that experiences current rates of age-specific mortality throughout its lifetime.
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Harlem, circa 1960-1980, to be lower than for men in Bangladesh. Geronimus, Bound, and
Colen (2011) provide more recent location-specific statistics, by race, for a geographically
diverse set of locations, and similarly demonstrate high variation in mortality rates, and in
black-white differences in mortality rates, across locations.11

A second important literature focuses on the “long reach” of health threats in early child-
hood and in utero (Barker, 1990 and 1995), particularly conditions of nutritional deficiencies
during these crucial periods of human physical development. This idea plays an important
role, for example, in Fogel’s (2004) analysis of the long-run decline in mortality, and is ana-
lyzed in a great many important studies. More generally, deprivation in childhood can lead
to poor health outcomes later in life via a number of potential behavioral mechanisms related
to the intergenerational transmission of socio-economic wellbeing.

Some of the research on the role of early-childhood circumstances on later-life mortality
focuses specifically on the African American population. For instance, even using a relatively
small sample of 582 older African Americans, Preston, Hill, and Drevenstedt (1998) were able
to show that children who were exposed to the most unhealthy childhood environments were
less likely to reach age 85 than those living in more favorable environments. In their study,
mortality risks at young ages and mortality risks at older ages are shown to be positively
correlated for this population, suggesting that assaults on health early in life adversely affect
mortality at all subsequent ages for the population. Similarly, Hayward and Gorman (2004)
study associations between childhood socioeconomic conditions and men’s mortality, and
Warner and Hayward (2006) assess the extent to which childhood and adulthood conditions
account for the racial gap in men’s mortality.12

Against this backdrop, there is clear value in being able to evaluate variation in later-life
health outcomes conditional on one’s location of birth. There is a small literature on this
topic. Fang, et al. (1996), for example, explore the high rate of mortality from cardiovascular
causes among blacks in New York City, finding that there is substantial variation among
blacks based on their place of birth. In particular, Southern-born blacks had higher rates
of mortality from cardiovascular disease than those of their Northeastern-born counterparts.
Greenberg and Schneider (1992), as another example, examine black mortality by place of
birth and residence. That paper suggests that blacks who migrated from the South had
higher mortality rates than blacks born in other regions in the United States.

In short, there are good reasons to believe that mortality in adulthood might vary by
state of birth in interesting and important ways. As we have mentioned, our focus is on
black and white individuals born during the 1930s. We then assess annual mortality rates
for these individuals for 1990 through 2000. Thus we are looking at mortality in the mid-
life (at ages 51 through 70) for men born in 15 states: the nine Southern states with the
largest African American populations—Alabama, Arkansas, Georgia, Louisiana, Mississippi,

11A major challenge in this literature is its difficulty in sorting out the extent to which bad environmental
factors within high-mortality locations cause poor health, or conversely, people who have better resources
and better health avoid such neighborhoods.

12See also work by Costa, et al. (2007), showing that black men in the early twentieth century have higher
incidence of infectious disease, leading them to have higher prevalence rates of chronic conditions, such as
arteriosclerosis, at older ages.
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North Carolina, South Carolina, Tennessee, and Virginia—and the Northern industrial states
of Illinois, Indiana, New Jersey, New York, Ohio, and Pennsylvania.13 Because of legacy
of slavery, the Southern states have relatively large African Americans born within their
borders, but even in the 1930s the number of Northern-born African Americans can be
modest. Hence, we focus on six large industrial states, which did have reasonably large
numbers of black births.

To see how the three estimators compare, in Panel A of Table 1 we compare the log
difference in black and white mortality using the GMM, forward, and backward estimates
of mortality. Despite using the same numerator (Vital Statistic’s counts of deaths by state-
of-birth and age), the backward and forward estimators are correlated only at 0.72. In
comparing these two estimators to the GMM estimator, we see that, as the theory predicts,
the backward estimator is more highly correlated with the GMM estimator than the forward
estimator.

In Panel B of Table 1, we provide summary statistics for black mortality rate, white
mortality rates, and differences in black-white mortality rates by age for men born in our 15
states. The black mortality rate exceeds the white mortality rate substantially at each age,
and the differences are remarkably stable, starting out at about 0.8 percent at early ages and
peaking at about 1.4 percent at age 67. As we shall see, however, these aggregated numbers
hide a great deal of heterogeneity.

3.1 Mortality Estimates by Birth State for Men Born 1930–1939:
A Comparison of Three Estimators

Our goal in this section of empirical results is to compare estimates of mortality using the
GMM, forward and backward estimators mentioned in our methodological section for a
substantive problem: Age-specific black-white mortality gaps.

Given that we are estimating mortality in state-of-birth×race×age×birth-cohort cells, in
many cases we are estimating mortality on the basis of relatively small samples. We wish
to compare black-white differences in mortality and see whether that differences increased
or decreased for the cohorts born in the 1930s. We begin by comparing the log differences
in mortality rates for black men (ln(qbas)) and white men (ln(qwas)), and for the following
regression:

ln(qbas)− ln(qwas) = αa + βs + τ(Cohort) + τn(Cohort× North) + εcs, (21)

where a indicates age (a = 51, . . . , 70), s indicates state, “Cohort” is an index of birth cohorts
(0 indicates 1930, 1 indicates 1931, et cetera), “North” is an indicator for being one of the
six Northern states, and c indicates birth cohort (c = 1930, . . . , 1939). Thus, we compare

13Of course our methodology could be applied to the study of mortality at younger ages and at older ages
as well—both of which are interesting. One reason we do not study mortality at younger ages for our cohorts
of study is a lack of consistently reported data on state of birth in available death records prior to 1978.
Researchers who look at black-white mortality at older ages would do well to consider age reporting issues
raised by Preston, et al. (1999).
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trends in black-white mortality differences in 15 states—the 9 Southern states where the
most African Americans were born in the 1930s, as well as 6 large comparison states from
the North.14 Because we expect errors to be correlated within a state and cohort, we cluster
our standard errors within the state and cohort, resulting in 150 clusters (10 cohorts by 15
states).

In Panel A of Table 2, we estimate equation (21) while constraining the state-of-birth
coefficients to be zero (βs = 0) for equations in which we use, respectively, the GMM es-
timator for the dependent variable, the forward estimator for the dependent variable, and
the backward estimator for the dependent variable. Notice that across regressions only the
measure of the dependent variable differs. In Panel B, we provide corresponding regressions
that allow for state-of-birth fixed effects. Several features of the results warrant mention:

First, both the forward estimator and the backward estimator produce substantially worse
fits, as measured by the R2, than the comparable GMM estimator. Also, not surprisingly, the
standard errors of the coefficient estimates when using the forward and backward estimators
are substantially higher than when using the GMM estimator. For instance, in Panel B the
standard error on the trend coefficient when using the forward estimator is approximately 1.5
times the size as the corresponding standard error when using GMM. Similarly, the standard
error on the interaction coefficient when using the forward estimator is 1.4 times that of the
corresponding GMM standard error.

Second, we have a potentially important substantive observation: the inclusion of state-
of-birth fixed effects substantially increases the R2 in all models. The F -test for inclusion
of state fixed effects rejects the hypothesis that βs = 0 at a significance level in excess of
0.0001.

Finally, inclusion of state of birth affects inferences about the black-white mortality gap.
Estimates from Panel A, with no state of birth indicators, suggest that black-white male
mortality gaps are widening over the period we study, but this inference is based on a trend
coefficient that is significant only at the 0.10 level in the regression using GMM mortality
estimates, and is not statistically significant at conventional levels when using either the for-
ward or backward mortality estimates. In contrast, estimates from Panel B, which included
state of birth indicators, provide convincing evidence that black-white mortality is widen-
ing, and suggest that this phenomenon is driven completely by men born in the South. We
emphasize that this later inference is very robust when we use the efficient GMM estimates
of mortality (with statistical significance on the trend of 0.01) but is less convincing when
we use either the forward or backward mortality estimates (with statistical significance on
the trend of 0.10).

The GMM estimator should, according to statistical theory, reduce the inherent sampling
variation in the Census data’s measures of cohort by state of birth. Because the GMM
combines information from the Censuses and the count of deaths from Vital Statistics, it
produces a more precise estimate of mortality rates by reducing the noise in our populations

14In terms of the notation in the previous section, demographic “group i” is now a single cell given by age,
state-of-birth, and birth cohort (e.g., black 60 year old men born in 1932 in Georgia). We have n = 1, 650
groups: 10 cohorts × 15 states × 11 years.
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estimates. This application, in our view, perfectly illustrates this improved precision. The
model better fits the data and the resulting standard errors of the parameter estimates are
reduced when using the less noisy measure of the dependent variable. Of course, in our
application we focused on states with relatively large African American birth cohorts; we
would expect more improvement yet from states with smaller birth cohorts.

4 Conclusion

This paper establishes a simple GMM estimator for the purposes of drawing statistical
inference when demographers combine data from two sources. To our knowledge, this is the
first application of GMM statistical procedures for the purpose of demographic estimation.

We develop an example that demonstrates the estimator. Our application is a potentially
valuable one. We are able to estimate, quite accurately, differences in the mortality rates
of black and white men by birth cohort and birth states for cohorts born during the Great
Depression. We find that state-of-birth effects are an important correlate with black-white
mortality differences. Moreover, for Southern-born men, we find strong evidence that racial
differences in mortality rates increased for this generation. For Northern-born men, however,
we cannot reject the hypothesis that there was no change in the black-white mortality gap.

As we have mentioned, natural future use of GMM estimation might include the exam-
ination of mortality by race, gender, and birth state over more states, more cohorts, and
more ages. Also, these methods would be useful for analyses that look at death rates by
cause of death.

More generally, GMM procedures are potentially useful for estimating other objects of in-
terest in demography—fertility rates, marriage rates, migration, etc.—or for conducting data
validation when more than one data source is available to estimate a population parameter.
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Table 1: Black-White Mortality Rates by Age, Cohort Born Between 1930 and 1939 in
Selected States

Panel A: Correlation of the Three Measure of the Dependent Variable, the Logarithm of the
Annual Death Rate

GMM Estimates Forward Estimates Backward Estimates
GMM Estimates 1.000 — —
Forward Estimates 0.904 1.000 —
Backward Estimates 0.947 0.720 1.000

Panel B: GMM Estimates of Black and White Mortality Rates by Age

Age Black Male White Male Differences N
Mortality Rate Mortality Rate

51 0.015 0.007 0.008 15
52 0.015 0.008 0.008 30
53 0.016 0.008 0.008 45
54 0.017 0.009 0.008 60
55 0.018 0.010 0.008 75
56 0.020 0.011 0.009 90
57 0.021 0.012 0.009 105
58 0.023 0.013 0.010 120
59 0.024 0.014 0.010 135
60 0.026 0.016 0.010 150
61 0.028 0.017 0.011 150
62 0.030 0.019 0.011 135
63 0.032 0.020 0.012 120
64 0.035 0.022 0.012 105
65 0.036 0.023 0.013 90
66 0.039 0.025 0.013 75
67 0.041 0.027 0.014 60
68 0.042 0.030 0.012 45
69 0.045 0.032 0.013 30
70 0.048 0.035 0.013 15

Notes: Sample is men born between 1930 and 1939 in the states of Alabama,
Arkansas, Georgia, Illinois, Indiana, Louisiana, Mississippi, North Carolina,
New Jersey, New York, Ohio, Pennsylvania, South Carolina, Tennessee, and
Virginia.
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Table 2: Black-White Male Mortality Differences, 1930–1939 Birth Cohorts for Selected
States

Panel A. No State of Birth Indicators

GMM Estimator Forward Estimator Backward Estimator

Age indicators Yes Yes Yes

Trend 0.0052* 0.0061* 0.0041
(0.00283) (0.00339) (0.00365)

North × Trend 0.0012 -0.0049 0.0066
(0.00330) (0.00415) (0.00398)

Ratios of standard error to
GMM standard error 1.000, 1.000 1.198, 1.258 1.290, 1.206

R2 0.247 0.194 0.229
N 1,650 1,650 1,650

Panel B. State of Birth Indicators Included

Age indicators Yes Yes Yes

Trend 0.0069*** 0.0062* 0.0069*
(0.00236) (0.00349) (0.00324)

North × Trend -0.0074* -0.0052 -0.0084
(0.00439) (0.00616) (0.00564)

Ratios of standard error to
GMM standard error 1.000, 1.000 1.478, 1.403 1.373, 1.285

R2 0.347 0.311 0.310
N 1,650 1,650 1,650

Notes: States include Alabama, Arkansas, Georgia, Illinois, Indiana, Louisiana, Mis-
sissippi, North Carolina, New Jersey, New York, Ohio, Pennsylvania, South Carolina,
Tennessee, and Virginia. Standard errors are clustered at the state-of-birth by birth
cohort. Dependent variable is log difference of black and white mortality differences.
Ages range from 51 to 70.

*Significant at 10 percent level.
**Significant at 5 percent level.
***Significant at 1 percent level.
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Appendix. Comparison to the Maximum Likelihood Estimator

Hansen (1982) establishes the optimal properties of the GMM estimator among the class of
method of moments estimators. However, GMM estimation is not familiar in demographic
research, so many readers might find it helpful to compare the GMM approach to the more
familiar idea of maximum likelihood (ML).

As we have seen, our problem boils down to estimating the fraction of the population
that is in group i in time 0, which we designate p0i . To set the stage, recall that if one wanted
to estimate that parameter using ML based solely on Census data in time 0, the goal would
be to choose the estimator that maximizes the log of

L =
S0!

S0
i !(S

0 − S0
i )!
p0i

S0
i (1− p0i )

(S0−S0
i ). (22)

The ML estimator is easily found here by taking the derivative of the log likelihood with
respect to p0i and setting to 0. The resulting estimator is the mean, p̃0i = S0

i /S
0.

Our ML problem, incorporating data from both the Census and from Vital Statistics, is
a bit harder. In this case we want to maximize the joint log likelihood of p0i and p1i , given by

ln
[
p0i

S0
i (1− p0i )

(S0−S0
i )
]

+ ln

[
p1i

S1
i (1− p1i )

(S1−S1
i )
]

+ C (23)

(where C is a constant that is independent of the parameters), subject to the constraint

ω0p0iS
0 − ω1p1iS

1 − TDi = 0. (24)

Carrying out the constrained maximization problem, and following an extensive series of
algebraic steps, we can show that the ML estimates are the values, p̃0i and p̃1i , that solve

ω0p̃0iS
0 − ω1p̃1iS

1 − TDi = 0, (25)

1

ω0S0p̃0i (1− p̃0i )
[
p̃0iS

0 − S0
i

]
+

1

ω1S1p̃1i (1− p̃1i )
[
p̃1iS

1 − S1
i

]
= 0. (26)

Below we use numerical methods to solve (25) and (26) to form ML estimates. Then with
the estimates of p0i , we proceed to estimate mortality using

T q
ML
i =

TDi

p̃i0N0
, (27)

where p̃i
0N0 serves to estimate N0

i (the denominator for the estimator) for each demographic
group.

Our interest here is the comparison of the ML estimator to the GMM procedure outlined
above. Recall that the GMM estimator of N0

i is a two step estimator in which one first
gets the minimum distance estimators, N̂0,MD

i and N̂1,MD
i , and uses those to find p̂0i and p̂1i .

These values are then used in a second stage, using equation (16), to find the second-stage
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estimator of N0
i . In principle one could similarly find a second-stage estimate of N1

i , and
then use those second-stage estimators to get updated estimates of p0i and p1i . These new
estimates could again be used in (16) to get third-stage estimators. The process could be
repeated in a fourth stage, and so on, until the exercise converges to fixed points, say p̌0i
and p̌1i . Suppose such fixed points satisfy (16), but now with Ň0

i = p̌0iN
0 on the left-hand

side, and with p̌0i replacing p̂0i and p̌1i replacing p̂1i on the right-hand side. Following many
algebraic manipulations, we find that these “iterated GMM” estimates must then also solve

ω0p̌0iS
0 − ω1p̌1iS

1 − TDi = 0, (28)

1

ω0S0p̌0i (1− p̌0i )
[
p̌0iS

0 − S0
i

]
+

1

ω1S1p̌1i (1− p̌1i )
[
p̌1iS

1 − S1
i

]
= 0. (29)

Notice that the solution for iterated GMM, (28) and (29), takes precisely the same form as
the equations that solve ML, (25) and (26); if we were to take the two-step GMM procedure
and iterate as an n-step procedure we would converge to the ML estimates. In short, GMM
can be thought of here as the first two steps in an iterative process that solves ML.

As Hayashi (2000) notes (see pages 481-482), in general GMM is less efficient than ML.
The exception is in such cases as ours—when one can exploit knowledge of the parametric
form of the density function in forming the weighting matrix W−1. While MLE is a sensible
method to use for our problem, both ML and GMM are asymptotically efficient, and the
GMM approach is considerably easier to implement.
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