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Abstract
We develop new quasi-experimental tools to measure racial discrimination, due to
either racial bias or statistical discrimination, in the context of bail decisions. We
show that the omitted variables bias in observational release rate comparisons can
be purged by using the quasi-random assignment of judges to estimate average
race-specific misconduct risk. We find that approximately two-thirds of the aver-
age release rate disparity between white and Black defendants in New York City
is due to racial discrimination. We then develop a hierarchical marginal treatment
e�ects model to study the drivers of discrimination, finding evidence of both racial
bias and statistical discrimination. Outcome-based tests of racial bias therefore
omit an important source of racial discrimination in bail decisions, and cannot be
used to rule out all possible violations of U.S. anti-discrimination law.
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1 Introduction
Racial disparities are pervasive throughout much of the U.S. criminal justice system. Compared to
observably similar white individuals, Black individuals are more likely to be searched by the police,
charged with a serious crime, detained before trial, convicted of an o�ense, and incarcerated.1 Such
racial disparities are often taken as evidence of discrimination driven by racially biased preferences
or stereotypes. But this interpretation overlooks two alternative explanations. First, the observed
disparities may reflect legally relevant di�erences in criminal behavior that are partially observed by
police o�cers, prosecutors, and judges but not by the econometrician. Second, the observed disparities
may also reflect discrimination driven by statistical discrimination, not just racially biased preferences
and stereotypes. Distinguishing between these di�erent explanations and correctly measuring racial
discrimination remains di�cult, hampering e�orts to formulate appropriate policy responses.

This paper develops new quasi-experimental tools to measure racial discrimination, regardless of
its source. We study bail decisions, where the sole legal objective of judges is to allow most defendants
to be released before trial while minimizing the risk of pretrial misconduct (such as failing to appear
in court or being arrested for a new crime). Bail judges thus risk violating U.S. anti-discrimination
law if they release white and Black defendants with the same objective misconduct potential at
di�erent rates. Correspondingly, we measure discrimination as the di�erence in a judge’s release rates
between white and Black individuals with identical misconduct potential. This measure is consistent
with mainstream legal views on what constitutes discrimination in the criminal justice system (Yang
and Dobbie, 2019), as well as economic notions of discrimination that compare the treatment of
white and Black individuals with the same productivity (Aigner and Cain, 1977) and notions of
algorithmic discrimination in the computer science literature (Berk et al., 2018). Importantly, our
measure captures discrimination arising from either racial bias or statistical discrimination. Since this
measure can be understood as isolating each judge’s legally unwarranted release rate disparity, we use
the terms racial discrimination and unwarranted disparity interchangeably.

Estimating legally unwarranted release rate disparities among white and Black defendants is funda-
mentally challenging. Observational comparisons cannot control for unobserved misconduct potential
and can therefore su�er from omitted variables bias (OVB) when there are unobserved racial di�er-
ences in misconduct risk. Randomized audit studies (e.g., Bertrand and Mullainathan, 2004; Ewens,
Tomlin and Choon Wang, 2014) can test whether decision-makers treat fictitious white and Black in-
dividuals with the same observable characteristics in the same way, but do not capture discrimination
on seemingly race-neutral characteristics and are infeasible in high-stakes and face-to-face settings
such as bail decisions. Outcome-based tests leveraging standard instrumental variables (IV) methods
can detect racial bias at the margin of release decisions (e.g., Arnold, Dobbie and Yang, 2018; Marx,
2018), but do not speak to the presence of statistical discrimination or measure the magnitude of
unwarranted disparities. Standard IV methods also require an assumption of first-stage monotonicity
(Imbens and Angrist, 1994; Heckman and Vytlacil, 2005), which here imposes a strong restriction on
how judges choose which defendants to release before trial.

Our primary methodological contribution is to show that racial discrimination in bail decisions,
due to either racial bias or statistical discrimination, can be measured with observational release

1There is a large literature documenting racial disparities in the criminal justice system. See, for example, work
by Gelman, Fagan and Kiss (2007), Antonovics and Knight (2009), Anwar, Bayer and Hjalmarsson (2012), Abrams,
Bertrand and Mullainathan (2012), McIntyre and Baradaran (2013), and Rehavi and Starr (2014), among many others.
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rate comparisons that are rescaled using quasi-experimental estimates of average white and Black
misconduct risk. The OVB in observational release rate comparisons comes from the correlation
between defendant race and unobserved misconduct potential in each judge’s defendant pool. When
judges are as-good-as-randomly assigned, this correlation is common to all judges and is a simple
function of misconduct risk (i.e., average misconduct potential) by race. We can thus use estimates
of race-specific misconduct risk to rescale observational release rate comparisons in order to make
released white and Black defendants comparable in terms of misconduct potential within each as-
good-as-randomly assigned judge’s defendant pool. The rescaled comparisons reveal the extent to
which each judge releases white and Black defendants with the same objective misconduct potential
at di�erent rates, even though this potential is unobserved and cannot be directly conditioned on.
The key econometric challenge is then to estimate the average misconduct risk parameters, which
is di�cult even when judges are as-good-as-randomly assigned since misconduct outcomes are only
observed for the subset of defendants who are endogenously released before trial.

We estimate the average misconduct risk parameters needed for our discrimination measure from
quasi-experimental variation in pretrial release and misconduct rates, without imposing a model of
judge behavior or a first-stage monotonicity assumption. To build intuition for our approach, consider
a setting with a supremely lenient and as-good-as-randomly assigned bail judge who releases nearly
all defendants assigned to her. The supremely lenient judge’s release rates among white and Black
defendants are close to one, meaning (by as-good-as-random assignment) that the misconduct rates
among her released white and Black defendants are close to the average misconduct risk parameters
needed for our discrimination measure. Without such a supremely lenient judge, the required average
misconduct risk inputs can be estimated using model-based or statistical extrapolations of pretrial
release and misconduct rates across quasi-randomly assigned judges. This extrapolation of quasi-
experimental moments is analogous to a standard regression discontinuity approach of extrapolating
average potential outcomes to a treatment cuto� from nearby observations. Importantly, neither our
approach to extrapolating average potential outcomes nor to estimating discrimination from these
extrapolations require a model of judge decision-making, only that the extrapolations of pretrial
release and misconduct rates and the judges’ legal objective are well-specified by the econometrician.

We use our quasi-experimental approach to measure racial discrimination in bail decisions in New
York City (NYC), home to one of the largest pretrial systems in the country. Our most conservative
estimates show that approximately two-thirds of the average release rate disparity between white and
Black defendants is explained by racial discrimination (62 percent, or 4.2 percentage points out of 6.8
percentage points), with the remaining one-third explained by unobserved racial di�erences in miscon-
duct risk. This finding applies to most defendant subgroups and is robust to di�erent extrapolations
of average misconduct risk, specifications of pretrial misconduct, classifications of pretrial release,
and definitions of defendant race. Judge-specific estimates show that the vast majority of bail judges
discriminate against Black defendants (87 percent, in our most conservative estimates), with higher
levels of discrimination among more stringent judges, judges assigned a lower share of cases with Black
defendants, and judges who are not newly appointed in our sample period.2 Judge-specific estimates
are also highly correlated over time, raising the possibility that discrimination across individual judges
can be reliably targeted by a policymaker.

2We define a judge as newly appointed if he or she enters the data after our sample period begins and works three
consecutive months of regular caseloads.
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Our second methodological contribution is to develop a hierarchical marginal treatment e�ects
(MTE) model that imposes additional structure on the quasi-experimental variation to investigate
whether these unwarranted disparities in bail decisions are driven by racial bias or statistical discrim-
ination. The model allows for judge- and race-specific risk preferences and signal quality. The latter
allows for heterogenous race-specific predictive skill across judges, in violation of the conventional
first-stage monotonicity assumption. The model implies a distribution of judge- and race-specific
MTE curves that can be used to test for racial bias at the margin of release and measure racial di�er-
ences in average risk or signal quality that otherwise generate statistical discrimination. We estimate
the distribution of MTE curves using a tractable simulated minimum distance (SMD) procedure that
matches moments of the quasi-experimental variation in pretrial release and misconduct rates across
judges. We find evidence of both racial bias and statistical discrimination in NYC, with the latter
coming from a higher level of average risk (that exacerbates discrimination) and less precise risk sig-
nals (that alleviates discrimination) for Black defendants. Outcome-based tests of racial bias (e.g.,
Arnold, Dobbie and Yang, 2018) therefore omit an important source of discrimination in NYC bail
decisions, and cannot be used to rule out all possible violations of U.S. anti-discrimination law.

We conclude by using our model to investigate whether discrimination can be reliably targeted,
and potentially reduced, with existing data. We suppose that judges can be subjected to race-specific
release rate quotas that eliminate unwarranted racial disparities, as estimated by a policymaker. We
find that targeting the most discriminatory NYC judges with a quota based on our quasi-experimental
estimates can reduce the average level of discrimination by 36 percent, and that targeting all judges
with such a quota can essentially eliminate discrimination, despite the noise in our estimation pro-
cedure. By comparison, targeting judges with a quota based on observational release rate disparities
can lead to a small but non-zero level of discrimination against white defendants, due to OVB.

This paper adds to a recent empirical literature that uses quasi-experimental variation to test for
bias and discrimination in the criminal justice system. Arnold, Dobbie and Yang (2018) use the release
tendencies of quasi-randomly assigned bail judges to test for racial bias under a conventional first-
stage monotonicity assumption, while Marx (2018) uses a similar approach to test for racial bias at
the margin of police stops. We show how quasi-experimental judge assignment can be used to measure
all forms of racial discrimination, not just racial bias, without any such behavioral assumptions. We
further show how the drivers of this more comprehensive measure of discrimination can be investigated
by imposing alternative structure on the quasi-experimental variation.3 This structure allows us to
translate di�erences in marginal outcomes into di�erences in average release rates, to quantify the
importance of racial bias (unlike typical outcome-based tests, which can only test for its existence).

Methodologically, this paper adds to a recent literature on estimating average treatment e�ects
(ATEs) and MTEs with multiple discrete instruments (Kowalski, 2016; Brinch, Mogstad and Wiswall,
2017; Mogstad, Santos and Torgovitsky, 2018; Hull, 2020). An important feature of our approach
is that we do not impose the usual first-stage monotonicity assumption, which has received recent
scrutiny both in general (Mogstad, Torgovitsky and Walters, 2019) and in the specific context of

3Other recent related work includes Rose (2020) and Feigenberg and Miller (2020). Rose (2020) shows that a policy
reform that sharply reduced prison punishments for technical probation violations nearly eliminated the racial disparity
in incarceration without significantly increasing the disparity in reo�ending rates, suggesting that technical probation
violations may convey less precise risk signals for Black individuals on probation. Feigenberg and Miller (2020) show
that Black motorists in Texas are stopped at higher rates than white motorists without any commensurate increase in
contraband hit rates, suggesting that the racial disparity in search rates is ine�cient.
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judge IV designs (Mueller-Smith, 2015; Frandsen, Lefgren and Leslie, 2019; Norris, 2019).4 Our
extrapolation-based solution to estimating ATEs (i.e., mean misconduct risk) without imposing mono-
tonicity is most closely related to Hull (2020), who considers non-parametric extrapolations of quasi-
experimental moments in the spirit of “identification at infinity” in sample selection models (Cham-
berlain, 1986; Heckman, 1990; Andrews and Schafgans, 1998). Our hierarchical solution to estimating
a distribution of MTE curves without monotonicity is most closely related to the contemporaneous
approach of Chan, Gentzkow and Yu (2020), who estimate a structural model of doctor preferences
and skill in making pneumonia diagnoses.5

The remainder of the paper is organized as follows. Section 2 provides an overview of the NYC
pretrial system. Section 3 outlines the conceptual framework underlying our analysis. Section 4
describes our data and documents release rate di�erences for Black and white defendants. Section 5
develops and implements our quasi-experimental approach to measuring racial discrimination in bail
decisions. Section 6 develops and estimates our hierarchical MTE model to explore the drivers of
discrimination. Section 7 conducts policy counterfactuals. Section 8 concludes.

2 Setting
We study racial discrimination in the New York City pretrial system, one of the largest in the country.
The U.S. pretrial system is meant to allow most criminal defendants to be released from legal custody
while minimizing the risk of pretrial misconduct. Bail judges in both NYC and the country as a whole
are granted considerable discretion in determining which defendants should be released before trial,
but they cannot discriminate against minorities and other protected classes even when membership
in a protected class contains information about the underlying risk of criminal misconduct (Yang and
Dobbie, 2019). Judges are also not meant to assess guilt or punishment when determining which
individuals should be released from custody, nor are they meant to consider the political consequences
of their bail decisions. Bail judges therefore risk violating U.S. anti-discrimination law if they release
white and Black individuals with the same objective pretrial misconduct potential at di�erent rates.

In NYC, bail conditions are set by a judge at an arraignment hearing held shortly after an arrest.
These hearings usually last a few minutes and are held through a videoconference to the detention
center. The judge typically receives detailed information on the defendant’s current o�ense and prior
criminal record, as well as a release recommendation based on a six-item checklist developed by a local
nonprofit (New York City Criminal Justice Agency Inc., 2016). The judge then has several options
in setting bail conditions. First, she can release defendants who show minimal risk on a promise to
return for all court appearances, known broadly as release on recognizance (ROR) or release without
conditions. Second, she can require defendants to post some sort of bail to be released. The judge
can also send higher-risk defendants to a supervised release program as an alternative to cash bail.

4Skepticism of conventional monotonicity in judge IV designs is as old as the assumption itself. In their initial
paper on the identification of local average treatment e�ects, Imbens and Angrist (1994) note that in the context of
administrative screening “[monotonicity] requires that if o�cial A accepts applicants with probability P (0), and o�cial
B accepts people with probability P (1) > P (0), o�cial B must accept any applicant who would have been accepted by
o�cial A. This is unlikely to hold if admission is based on a number of criteria” (Example 2; p. 472).

5Chan, Gentzkow and Yu (2020) model doctor decisions as following a hierarchical bivariate probit with variation
in the latent index correlation across doctors. By comparison, we model judges as acting on posteriors from noisy risk
signals with variation in signal quality across judges. We also show how this model can be used to form posterior MTE
frontiers for each judge and race, and link these MTE frontiers to racial bias and statistical discrimination.
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Finally, the judge can detain defendants pending trial by denying bail altogether.6

We exploit three features of the pretrial system in our analysis. First, the legal objective of
bail judges is both narrow and measurable among the set of released defendants for whom pretrial
misconduct outcomes are observed (although not among detained defendants, for whom such outcomes
are unobserved). Second, bail judges can be e�ectively viewed as making binary “treatment” decisions,
releasing low-risk defendants (generally by ROR or setting a low cash bail amount) and detaining high-
risk defendants (generally by setting a high cash bail amount). We also explore di�erent definitions of
bail decisions in our analysis, such as viewing judges as deciding between release without conditions
and any cash bail amount. Third, the case assignment procedures used in most jurisdictions, including
NYC, generate quasi-random variation in judge assignment for defendants arrested at the same time
and place. The quasi-random variation in judge assignment, in turn, generates quasi-experimental
variation in the probability that a defendant is released before trial.

There are also two di�erences between the NYC pretrial system and other pretrial systems around
the country that are potentially relevant for our analysis. First, New York state instructs judges to
only consider the risk that defendants will not appear for a required court appearance when setting
bail conditions (a so-called failure to appear, or FTA), not the risk of new criminal activity as in
most states. We explore robustness to this New York specific definition of pretrial misconduct in our
analysis. Second, many defendants in NYC will never have bail set, either because the police gave
them a desk appearance ticket that does not require an arraignment hearing or because the case was
dismissed or otherwise disposed at the arraignment hearing before bail was set. However, the decision
of whether or not to issue a desk appearance ticket is made before the bail judge is assigned, and cases
should only be dismissed or otherwise disposed at arraignment if there is a clear legal defect in the case
(Leslie and Pope, 2017). We show below that there is no relationship between the assigned bail judge
and the probability that a case exits our sample due to case disposal or dismissal at arraignment, and
exclude these cases from our analysis.

3 Conceptual Framework

3.1 Defining Racial Discrimination

We study racial discrimination in a setting where a set of decision-makers j make binary decisions
Dij œ {0, 1} for an iid set of individuals i. Each decision-maker’s goal is to align Dij with an
unobserved binary state Y ú

i
œ {0, 1}. In the context of bail decisions, Dij = 1 indicates that judge

j would release defendant i if assigned to her case (with Dij = 0 otherwise) while Y ú
i

= 1 indicates
that the defendant would subsequently fail to appear in court or be rearrested for a new crime if
released (with Y ú

i
= 0 otherwise). Each judge’s objective is to release individuals without misconduct

potential (Y ú
i

= 0) and detain individuals with misconduct potential (Y ú
i

= 1), but may di�er in
their predictions of which individuals are in each group.7 We note that we define Dij as the potential
decision of judge j for each defendant i, setting aside for now the judge assignment process which
yields actual release decisions from these latent variables.

6Cases such as murder, kidnapping, arson, and high-level drug possession and sale almost always result in a denial of
bail, though these cases make up only about 0.8 percent of our sample. By comparison, about 70 percent of defendants
in NYC are released ROR each year, nearly 30 percent are assigned cash bail or one less commonly used bail options
such as insurance company bail bonds, and about 1.5 percent are sent to a supervised release program.

7Appendix B.1 discusses how our approach can be extended to multi-valued or continuous Y ú
i

.
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We measure racial discrimination, both overall and for each judge, with the average release rate
disparity between white and Black individuals with identical misconduct potential. Letting Ri œ {w, b}
index the race of white and Black individuals, the level of discrimination for judge j is given by:

�j = E[E[Dij | Y ú
i

, Ri = w] ≠ E[Dij | Y ú
i

, Ri = b]] (1)

The system-wide level of discrimination is given by the case-weighted average �j across all judges.
The inner di�erence of Equation (1) compares the potential release rates of white (Ri = w) and Black
(Ri = b) defendants with the same objective misconduct potential Y ú

i
when assigned to judge j. The

outer expectation averages this conditional release rate comparison over the distribution of Y ú
i

. We
say that judge j discriminates against Black defendants when �j > 0, that she discriminates against
white defendants when �j < 0, and that she does not discriminate against either Black or white
defendants when �j = 0, again recognizing that the Dij capture a judge’s potential release decisions.
By holding the potential defendant population fixed, estimates of �j can be used to calculate both
the average level of racial discrimination in a bail system as well as any variation in the level of
discrimination across judges. As mentioned above, we interchangeably refer to �j as the level of
racial discrimination for judge j and the unwarranted release rate disparity for judge j.

With binary Dij and Y ú
i

, the �j parameters can be understood as capturing racial di�erences in
the tendency of judge j to correctly and incorrectly classify individuals by their objective misconduct
potential. We let ”T

jr
= Pr(Dij = 1 | Y ú

i
= 0, Ri = r) denote the probability that judge j correctly

releases defendants of race r without misconduct potential (her “true negative rate” for this race) and
”F

jr
= Pr(Dij = 1 | Y ú

i
= 1, Ri = r) denote the probability that judge j incorrectly releases defendants

of race r with misconduct potential (her “false negative rate”). Equation (1) can then be written:

�j =
!
”T

jw
≠ ”T

jb

"
(1 ≠ µ̄) +

!
”F

jw
≠ ”F

jb

"
µ̄ (2)

where µ̄ = E[Y ú
i

] denotes the overall risk of pretrial misconduct in the population of white and Black
defendants. Equation (2) shows that �j is a weighted average of racial di�erences in true and false
negative rates for judge j. Since 1 ≠ ”T

jr
= Pr(Dij = 0 | Y ú

i
= 0, Ri = r) denotes the probability that

judge j incorrectly detains defendants of race r without misconduct potential (her “false positive rate”
for this race), Equation (2) also shows that �j captures racial di�erences in type-I and type-II error
rates. The system-wide level of discrimination similarly captures the case-weighted average racial
di�erence in error rates across all judges.

The �j parameters capture the di�erential treatment of Black and white defendants for all reasons
unrelated to an individual’s true potential for pretrial misconduct, a measure that is consistent with
mainstream notions of discrimination in the legal, economic, and computer science literatures. The
intentional unequal treatment of otherwise identical Black and white individuals is prohibited by
the Equal Protection Clause of the 14th Amendment, and, more generally, is unwarranted because
membership in a particular demographic group is not relevant to the purposes of the criminal justice
system (Yang and Dobbie, 2019). Estimating �j is therefore an important first step to establish
unconstitutional behavior by judges in many cases, though it may not be su�cient absent proof of
discriminatory intent.8 Our measure also aligns with the labor market definition of discrimination

8The Supreme Court has ruled that “o�cial action will not be held unconstitutional [under the Equal Protection
Clause] solely because it results in a racially disproportionate impact...Proof of racially discriminatory intent or purpose
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in Aigner and Cain (1977), which compares the treatment of white and Black workers with the
same objective level of productivity. We analogously compare the release rates of white and Black
defendants with the same objective potential for pretrial misconduct, Y ú

i
.9 Finally, our measure is

closely related to the idea of “conditional procedure accuracy equality” in the literature on algorithmic
discrimination (Berk et al., 2018). This fairness condition imposes the equality of type-I and type-II
error rates across race, which per Equation (2) would imply �j = 0.

Three further comments on the interpretation of �j are warranted. First, the �j parameters
capture a broad notion of discrimination arising from either racial bias or statistical discrimination,
as we formalize below. Both forms of discrimination may arise either because of how a judge directly
considers defendant race or because of how a judge considers observable characteristics that are cor-
related with race. Judges may, for example, be excessively strict when a defendant is charged with
certain drug o�enses (relative to their relevance for future misconduct) and Black defendants may be
more likely to be charged with these types of crimes. Judges may similarly place excessive weight on
whether a defendant lives or works in a predominantly Black neighborhood (again relative to its rel-
evance for future misconduct). In both cases, the �j parameters will capture de facto discrimination
through these seemingly race-neutral characteristics by showing that Black defendants are more likely
to be detained than white defendants of equal misconduct potential.

Second, and relatedly, �j is intended to capture the di�erential treatment of white and Black
defendants with the same unobserved misconduct potential, not those with the same observable char-
acteristics. Consider an extreme version of neighborhood-based discrimination in which white and
Black defendants are identical except that white defendants are idiosyncratically more likely to live
in a particular neighborhood. Suppose, in behavior akin to the illegal practice of redlining, judge
j releases a higher proportion of defendants in predominantly white neighborhoods but within each
neighborhood she is “race-blind,” releasing white and Black defendants at the same rate. Conditional
on neighborhood, we would find no release rate disparity. Yet, there is clearly discrimination as white
and Black defendants have identical misconduct risk but Black defendants are detained at higher rates
(so �j > 0). This example shows how adjusting for observable characteristics (such as neighborhood)
need not bring observed disparities closer to �j , a point we return to in Section 3.3.

Finally, we note that �j captures discrimination at a single stage of the criminal justice system,
but it can be a�ected by discrimination both at other points in the criminal justice system and in
society as a whole. For example, potential over-policing of Black neighborhoods relative to white
neighborhoods may impact the types of crimes that are reported to and investigated by the police,
subsequently impacting the types of cases that a judge hears. We hold this population of cases fixed
in measuring discrimination in bail decisions, and therefore hold fixed any unwarranted disparities at
other points in the system that might a�ect �j .

is required.” (Arlington Heights v. Metropolitan Housing Development Corp., 429 U.S. 252, 264-65, 1977). In McCleskey
v. Kemp, for example, the Court rejected a challenge to Georgia’s capital punishment system despite statistical evidence
of racial disparities in death penalty decisions because the evidence was “clearly insu�cient to support an inference
that any of the decisionmakers...acted with discriminatory purpose.” 481 U.S. 279, 281-82 (1987).

9By comparison, Phelps (1972) suggests measuring discrimination by comparing the treatment of white and Black
workers with the same subjective signal of labor market productivity. Discrimination measures based on objective
potential outcomes (as in this paper and Aigner and Cain (1977)) and subjective signals of potential outcomes (as in
Phelps (1972)) are generally the same when the quality of the signals is identical by race, but can di�er when individuals
of di�erent races tend to generate more or less informative signals. We return this issue in Section 6, where we estimate
a structural model that allows for more or less informative risk signals for defendants of di�erent races.

7



3.2 Theoretical Drivers of Discrimination

Racial discrimination in the sense of �j ”= 0 can arise from two distinct theoretical channels. The
first is racial bias, in which judges discriminate against Black defendants at the margin of pretrial
release due to either racial preferences (Becker, 1957) or some form of inaccurate racial stereotyping
(Bordalo et al., 2016). The second is statistical discrimination, in which judges act on accurate risk
predictions but discriminate due to racial di�erences in average risk or the precision of received risk
signals (Phelps, 1972; Arrow, 1973; Aigner and Cain, 1977). Racial discrimination can be defined and
measured without a model for judicial decision-making, but understanding these theoretical channels
requires imposing more structure on the binary release decisions Dij .

We formalize the relationship between racial discrimination, racial bias, and statistical discrim-
ination by considering a population of white and Black defendants assigned to a single bail judge.
Following the classic analysis of Aigner and Cain (1977), we suppose that the judge observes each
defendant’s race Ri and a noisy signal of pretrial misconduct ‹i = Y ú

i
+ ÷i with normally distributed

noise: ÷i | Y ú
i

, (Ri = r) ≥ N(0, ‡2
r
). We allow both average misconduct risk µr = E[Y ú

i
| Ri = r]

and the “quality” (i.e. precision) of risk signals ·r = 1/‡r to vary by defendant race r œ {w, b}. We
assume the judge forms a posterior risk prediction p(‹i, Ri) from the signal and the defendant’s race.
Here we assume this prediction is accurate, in that p(‹i, Ri) = Pr(Y ú

i
= 1 | ‹i, Ri). We also assume

the judge has a subjective benefit of releasing individuals of race r, given by fir œ (0, 1). The judge
then releases all defendants whose benefit exceeds the posterior risk cost, yielding the decision rule:

Di = 1[fiRi Ø p(‹i, Ri)] (3)

Appendix B.2 derives the specific form of the posterior function p(·), completing the model.10

Racial bias in the sense of Becker (1957) arises when the judge perceives a lower benefit from
releasing Black defendants relative to white defendants with the same risk posterior, so that fib < fiw.
All else equal, such bias will lead to racial discrimination. By applying di�erent thresholds to posterior
risk, the judge generally makes di�erent decisions for white and Black defendants with the same
misconduct potential Y ú

i
. If, for example, fib < fiw but both mean risk µr and signal quality ·r are the

same across race (implying a common distribution of p(‹i, Ri) given Y ú
i

), the judge will release fewer
Black defendants conditional on Y ú

i
such that �j > 0. Inaccurate racial stereotyping can similarly

result in discrimination and tends to be observationally equivalent to such racial animus (Arnold,
Dobbie and Yang, 2018). In this case, even though judges believe they are applying the same threshold
(i.e. fib = fiw), inaccurate posterior beliefs lead them to e�ectively set di�erent release standards by
race. Since inaccurate stereotyping and racial animus tend to be observationally equivalent, we use
the term racial bias for both potential channels. Inaccurate stereotyping and racial animus can both
manifest through seemingly-race neutral characteristics, such as crime type or neighborhood. In the
redlining example described above, for instance, a judge may indirectly set race-specific thresholds by
prioritizing defendants from predominantly white neighborhoods.

Statistical discrimination in the sense of Aigner and Cain (1977) arises when judges act on accurate
race-specific predictions of defendant risk but discriminate because these predictions are a�ected by
racial di�erences in either the average misconduct risk µr or signal quality ·r. Di�erences in average

10An alternative model of judicial decision-making specifies race-specific costs of misconduct classification errors.
Appendix B.3 shows how such a model also leads to a threshold decision rule, with fir denoting the relative cost of
releasing defendants with misconduct potential.
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misconduct risk µr will tend to lead to lower release rates for defendants in the group with higher
average misconduct risk, thereby resulting in discrimination against that group. Suppose, for example,
that signal quality and release benefits are the same across race (·b = ·w and fib = fiw) but the
average level of risk is higher for Black defendants (µb > µw). The judge uses both the risk signal ‹i

and the defendant’s race to accurately predict misconduct, so the judge’s posterior p(‹i, Ri) will be
systematically higher among Black defendants given ‹i. Black defendants will thus be less likely to
be released conditional on Y ú

i
, such that �j > 0, even though the judge’s posterior threshold fir and

the distribution of risk signals ‹i do not depend on race given Y ú
i

. Statistical discrimination due to
di�erences in signal quality ·r will instead have an ambiguous e�ect on release rates disparities. If,
for example, a judge’s release threshold fir is higher than the average level of misconduct risk in the
population µr then noisier risk signals will lead to fewer defendants of that race being detained given
true misconduct potential, as judges place more weight on the mean risk µr which falls below the
threshold.11 Di�erences in signal quality may reflect di�erences in the informativeness of seemingly
race-neutral characteristics, such as when a defendant’s neighborhood is more predictive of pretrial
misconduct potential for white defendants relative to Black defendants.

Racial bias and accurate statistical discrimination can both generate unwarranted release rate
disparities, but these two theoretical drivers yield di�erent predictions for misconduct outcomes at
the margin of release. When risk posteriors are accurate, marginal released outcomes capture the
race-specific release benefits:

E[Y ú
i

| p(‹i; Ri) = fiRi , Ri] = E[Y ú
i

| E[Y ú
i

| ‹i, Ri] = fiRi , Ri] = fiRi (4)

Marginal white and marginal Black defendants should therefore have the same misconduct rate at
the margin of release if the judge is racially unbiased (fiw = fib), but marginal white defendants
should have a higher probability of misconduct if the judge is racially biased against Black defendants
(fiw > fib). Finding unequal marginal outcomes thus rejects accurate statistical discrimination as the
sole reason for finding �j ”= 0.

3.3 Empirical Challenges

Estimating racial discrimination is di�cult because observational comparisons of white and Black
release rates cannot control for unobserved misconduct potential and are therefore likely to su�er
from omitted variables bias (OVB). Testing for specific drivers of discrimination, such as racial bias,
is also di�cult unless judges have a common ordering of defendants by their appropriateness for
release, satisfying a conventional but strong assumption of first-stage monotonicity.

To formalize these empirical challenges, we introduce new notation for the data observed by an
econometrician. Let Zij = 1 if defendant i is assigned to judge j, let Di =

q
j

ZijDij indicate the
defendant’s release status, and let Yi = DiY ú

i
indicate the observed pretrial misconduct outcome. The

expression for observed pretrial misconduct reflects the fact that an individual who is detained (Di = 0)
cannot fail to appear in court or be rearrested for a new crime, such that Yi = 0 when Di = 0 despite
individual i’s pretrial misconduct potential Y ú

i
. The econometrician observes

!
Ri, (Zij)J

j=1, Di, Yi

"
for

11The theoretical literature typically considers racial bias and statistical discrimination in isolation, while our empirical
analysis allows racial di�erences in risk thresholds fir, signal quality ·r, and mean risk µr to each a�ect unwarranted
disparity �j . We continue to refer to the case of fiw ”= fib as racial bias in the model, while referring to ·w ”= ·b or
µw ”= µb as statistical discrimination.
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each defendant, and records whether the defendant is white in an indicator, Wi = 1[Ri = w].
Rotational assignment of arraignment shifts can generate quasi-random assignment of individuals

to di�erent bail judges. To show how such quasi-experimental variation can and cannot help with
measuring racial discrimination and its drivers we assume here that judges are simply randomly
assigned, such that Zij is independent of (Ri, Dij , Y ú

i
) for each j. In practice, we relax this assumption

to allow for the conditional quasi-random assignment in our setting.

Omitted Variables Bias in Observational Comparisons

Observational disparity analyses, whether in bail decisions or another area of the criminal justice
system, usually come from “benchmarking” regressions of outcomes such as pretrial release on an
indicator for an individual’s race and controls for the observed characteristics of those individuals
(e.g., Gelman, Fagan and Kiss, 2007; Abrams, Bertrand and Mullainathan, 2012). Since pretrial
misconduct potential Y ú

i
is both unobserved and likely to a�ect release decisions, such observational

comparisons are likely to produce biased estimates of the discrimination parameters �j .
To formalize the OVB challenge, we consider a simple judge-specific benchmarking regression:

Di =
ÿ

j

–jWiZij +
ÿ

j

„jZij + ‘i (5)

where Di is again an indicator for pretrial release, WiZij is the interaction of the indicator for the
defendant being white and a fixed e�ect of each judge, and Zij are non-interacted judge fixed e�ects.
We omit the constant term so that all judge fixed e�ects are included, and abstract away from other
defendant observables for simplicity. The interaction coe�cients thus measure the di�erence in judge
j’s release rates for white defendants relative to Black defendants:

–j = E[Di | Ri = w, Zij = 1] ≠ E[Di | Ri = b, Zij = 1] (6)

While we focus here on a judge-specific benchmarking regression, the same conclusions emerge from
an analysis of a simpler system-wide benchmarking regression of Di = „ + –Wi + ‘i.

Even with random judge assignment, the release rate disparities –j will tend to di�er from the
unwarranted disparity parameters �j . When Zij is independent of (Ri, Dij , Y ú

i
),

–j =E[Dij | Ri = w] ≠ E[Dij | Ri = b] (7)

Defining, as above, µr = E[Y ú
i

| Ri = r] as the average misconduct risk among individuals of race r

and (”T

jr
, ”F

jr
) as the judge’s true and false negative rates for individuals of race r, these release rate

disparities can be written:

–j =
!
”T

jw
(1 ≠ µw) + ”F

jw
µw

"
≠

!
”T

jb
(1 ≠ µb) + ”F

jb
µb

"
(8)

In contrast, judge j’s unwarranted release rate disparity given by Equation (2) can be written:

�j =
!
”T

jw
(1 ≠ µ̄) + ”F

jw
µ̄

"
≠

!
”T

jb
(1 ≠ µ̄) + ”F

jb
µ̄

"
(9)

where µ̄ = E[Y ú
i

] = pwµw + pbµb is the average misconduct risk in the population of defendants, with
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pr = Pr(Ri = r) denoting racial shares.
The di�erence between the benchmarking regression coe�cient –j in Equation (8) and the judge

discrimination measure �j in Equation (9) measures OVB in the simple benchmarking regression
given by Equation (5). This di�erence can be written

›j © –j ≠ �j =
!
”T

jw
(µ̄ ≠ µw) + ”F

jw
(µw ≠ µ̄)

"
≠

!
”T

jb
(µ̄ ≠ µb) + ”F

jb
(µb ≠ µ̄)

"

= (µb ≠ µw) ◊
#!

”T

jw
≠ ”F

jw

"
pb +

!
”T

jb
≠ ”F

jb

"
pw

$
(10)

where the second line follows by definition of the population risk µ̄. The regression coe�cient –j will
be biased upward for �j when ›j > 0 and biased downward when ›j < 0.

Three insights follow from the OVB formula (10). First, conventional benchmarking regressions
will generally yield biased estimates of the absolute level of discrimination �j , even with quasi-
random judge assignment. The exception is when either judge release decisions are independent of
potential misconduct for each race (i.e., E[Dij | Y ú

i
, Ri] does not depend on Y ú

i
, so ”T

jr
= ”F

jr
) or mean

misconduct risk is identical across race (i.e., µw = µb). Both scenarios are unlikely in practice.
Second, conventional benchmarking regressions will also yield biased estimates of the relative

di�erences in the extent of racial discrimination across judges, even when judges are as-good-as-
randomly assigned. The extent of OVB can also vary across judges in Equation (10), such that
di�erence in benchmarking coe�cients between judge j and k identifies –j ≠ –k = �j ≠ �k + ›j ≠ ›k

and not �j ≠ �k. In general, OVB will vary across judges whenever there are di�erential responses
to misconduct potential di�erences, such that ”T

jr
≠ ”F

jr
varies across j for either race r.12

Third, Equation (10) suggests a potential avenue for estimating racial discrimination when bail
judges are as-good-as-randomly assigned, using familiar econometric objects. One of the terms driving
the OVB of each –j is the di�erence in race-specific misconduct risk in the population, µb ≠µw, which
is common to all judges. With Y ú

i
capturing defendant i’s potential for pretrial misconduct when

released and Yi = 0 for all detained individuals, the µr = E[Y ú
i

| Ri = r] can be understood as
average treatment e�ects (ATEs), of pretrial release on pretrial misconduct, among individuals of race
r. We show in Section 5 how such ATEs can be estimated from quasi-experimental judge assignment
and used to purge OVB from conventional benchmarking estimates, recovering valid estimates of �j .

It is also worth highlighting that adding observable characteristics to the simple benchmarking
regression (5) need not solve the OVB challenge and may either bring observed disparities closer to or
further away from �j (Ayres, 2010). Even when the observables are rich enough to absorb di�erences
in misconduct potential Y ú

i
, their inclusion may introduce new bias by absorbing part of the judge’s

decision-making process that yields discrimination on seemingly race-neutral characteristics (as in our
redlining example above). This observation cautions against an approach that conditions on as many
observables as possible in order to “explain away” observed racial disparities, or which interprets a
covariate-adjusted disparity as an upper bound on racial discrimination.

12To see this simply, suppose all judges are non-discriminatory, with ”T

jr
= ”T

j
and ”F

jr
= ”F

j
for each j and r, such that

�j = 0 for each j. Suppose further that judges release all defendants without misconduct potential, such that ”T

j
= 1.

Di�erences in judge leniency are then solely due to di�erences in their rate of releasing defendants with misconduct
potential, ”F

j
. Equation (10) shows that these di�erences drive di�erences in OVB, since ›j = (µb ≠ µw)(1 ≠ ”F

j
) in this

case. Consequently, a benchmarking analysis would tend to incorrectly suggest not only racial discrimination (›j > 0)
but also di�erential discrimination across judges (›j ”= ›k) when the average risk di�ers by race.
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Monotonicity Violations in Standard IV Estimates

Testing for racial bias and statistical discrimination is also di�cult unless judges have a common
ordering of defendants by their appropriateness for release, satisfying a conventional first-stage mono-
tonicity assumption. For example, standard IV methods can be used to test for racial bias (whether
due to preferences or inaccurate stereotyping) given the quasi-random assignment of judges and first-
stage monotonicity (Arnold, Dobbie and Yang, 2018; Marx, 2018). Monotonicity is, however, an
especially strong assumption in this setting, implying that all judges are equally skilled in predicting
an individual’s propensity for pretrial misconduct and only di�er in terms of the thresholds they set
on a common posterior risk ordering.

To illustrate this potential limitation of the standard IV-based test for racial bias, we consider a
multiple-judge generalization of the earlier decision model. The release rule for each judge j is given
by Dij = 1[fijRi Ø pj(‹ij , Ri)], where fijr is the race-specific release benefit of judge j, and pj(v, r) is
the judge’s posterior for the misconduct risk of a defendant of race r who sends a signal of v. The most
general version of this model allows risk posteriors to di�er across judges because of heterogeneous
beliefs and signal qualities. Correspondingly, we index the signals ‹ij of heterogenous quality ·jr by
j as well as by r. Judges with higher ·jr can be thought of as being more skilled, in that they base
decisions on more predictive signals of misconduct potential.

Conventional first-stage monotonicity identifies marginal misconduct outcomes for white and Black
defendants, which can be used to test for racial bias by assuming judges form common risk posteriors.
Per Imbens and Angrist (1994), when pj(‹ij , Ri) = p(‹i, Ri) does not vary by j, a linear IV regression
of misconduct outcomes Yi on release Di instrumented by quasi-randomly assigned judge indicators
Zij , in a sample of either white or Black individuals assigned to one of two judges, identifies a local
average treatment e�ect:

E[Yi | Zij = 1, Ri] ≠ E[Yi | Zik = 1, Ri]
E[Di | Zij = 1, Ri] ≠ E[Di | Zik = 1, Ri]

= E[Y ú
i

| fijRi Ø p(‹i, Ri) > fikRi ] (11)

where here the e�ect of “treating” individual i with release is simply her misconduct potential Y ú
i

.
Equation (11) thus gives the average misconduct risk for “compliers” of race Ri, whose posterior risk
p(‹i, Ri) lies between the two judge benefit thresholds fijRi and fikRi (where fijRi Ø fikRi without loss).
As these two thresholds become closer, the IV estimand in Equation (11) approaches the marginal
released outcomes of each judge in Equation (4) and can therefore be used to test whether fijw = fijb.
Arnold, Dobbie and Yang (2018) show how standard linear and local IV procedures yield such tests
in settings with many quasi-randomly assigned bail judges.

When judge skill varies, however, first-stage monotonicity is violated and standard IV procedures
may not capture average misconduct risk for marginal defendants. If ·jr ”= ·kr, then pj(‹ij , Ri) ”=
pk(‹ik, Ri) and the same linear IV regression instead identifies a non-convex linear combination of
treatment e�ects for “complier” and “defier” populations:

E[Yi | Zij = 1, Ri] ≠ E[Yi | Zik = 1, Ri]
E[Di | Zij = 1, Ri] ≠ E[Di | Zik = 1, Ri]

= pcRiE[Y ú
i

| fijRi Ø pj(‹ij , Ri), pk(‹ik, Ri) > fikRi ] (12)

≠ pdRiE[Y ú
i

| fikRi Ø pk(‹ik, Ri), pj(‹ij , Ri) > fijRi ]

where pcr is proportional to the complier share of the population of race r who is newly released when
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switching assignment from judge k to judge j, and pdr is proportional to the defier share who is newly
detained (with pcr ≠pdr = 1). Unlike Equation (11), Equation (12) generally cannot be used to isolate
marginal released outcomes and test whether fijw = fijb. Consequently, the IV-based tests for racial
bias proposed by Arnold, Dobbie and Yang (2018) are generally invalid when judge skill varies. In
Section 6, we develop an alternative approach to test for racial bias in a model that allows for variation
in judge skill. We also show how statistical discrimination due to racial di�erences in average risk or
signal quality across race can be measured in this more realistic model with heterogeneous judge skill.

4 Data and Observational Comparisons

4.1 Sample and Summary Statistics

Our analysis of racial discrimination in bail decisions is based on the universe of 1,458,056 arraignments
made in NYC between November 1, 2008 and November 1, 2013. The data contain information on a
defendant’s gender, race, date of birth, and county of arrest, as well as the (anonymized) identity of
the assigned bail judge. In our primary analysis, we categorize defendants as white (including both
non-Hispanic and Hispanic white individuals), Black (including both non-Hispanic and Hispanic Black
individuals), or neither. We explore alternative categorizations of race in robustness checks below.

In addition to detailed demographics, our data contain information on each defendant’s current
o�ense, history of prior criminal convictions, and history of past pretrial misconduct (both rearrests
and FTA). We also observe whether the defendant was released at the time of arraignment and
whether this release was due to release without conditions or some form of money bail. We categorize
defendants as either released (including both release without conditions and with paid cash bail) or
detained (including cash bail that is not paid) at the first arraignment, though we again explore
robustness to other categorizations of the initial pretrial release decision below. Finally, we observe
whether a defendant subsequently failed to appear for a required court appearance or was subsequently
arrested for a new crime before case disposition. We take either form of pretrial misconduct as the
primary outcome of our analysis, but again explore robustness to other measures below.

We make four key restrictions to arrive at our estimation sample. First, we drop cases where the
defendant is not charged with a felony or misdemeanor (N=26,057). Second, we drop cases that were
disposed at arraignment (N=364,051) or adjourned in contemplation of dismissal (N=230,517). This
set of restrictions drops cases that are likely to be dismissed by virtually every judge: Appendix Table
A1 confirms that judge assignment is not systematically related to case disposal or case dismissal.
Third, we drop cases in which the defendant is assigned a cash bail of $1 (N=1,284). This assignment
occurs in cases in which the defendant is already serving time in jail on an unrelated charge; the $1
cash bail is set so that the defendant receives credit for served time, and does not reflect a new judge
decision. Fourth, we drop defendants who are non-white and non-Black (N=45,529). Finally, we
drop defendants assigned to judges with fewer than 100 cases (N=3,785) and court-by-time cells with
fewer than 100 cases, only one unique judge, or only Black or only white defendants for a given judge
(N=191,647), where a court-by-time cell is defined by the assigned courtroom, shift, day-of-week,
month and year (e.g., the Wednesday night shift in Courtroom A of the Kings County courthouse in
January 2012). The final sample consists of 595,186 cases, 367,434 defendants, and 268 judges.13

13Appendix Table A2 compares the full sample of NYC bail cases to our estimation sample. By construction, our
estimation sample has a somewhat lower release rate, although the ratio of release rates by race is similar. Our estimation
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Table 1 summarizes our estimation sample, both overall and by race. Panel A shows that 73.0
percent of defendants are released before trial. A defendant is defined as released before trial if either
the defendant is released without conditions (ROR) or the defendant posts the required bail amount
before disposition. The vast majority of these releases are without conditions, with only 14.4 percent
of defendants being released after being assigned money bail. White defendants are more likely to be
released before trial than Black defendants, with a 76.7 percent release rate relative to a 69.5 percent
release rate. Among released defendants, however, the distribution of release conditions (e.g. the
ROR share) is virtually identical across race.

Judges may release white defendants at a higher rate than Black defendants because of relevant
di�erences in defendant or charge characteristics. Consistent with this idea, Panel B of Table 1 shows
that Black defendants are 4.9 percentage points more likely to have been arrested for a new crime
before trial in the past year compared to white defendants, as well as 3.0 percentage points more likely
to have a prior FTA in the past year. Panel C further shows that Black defendants are 1.3 percentage
points more likely to have been charged with a felony compared to white defendants, as well as 3.6
percentage points more likely to have been charged with a violent crime. Finally, Panel D shows that
Black defendants who are released are 6.6 percentage points more likely to be rearrested or have an
FTA than white defendants who are released (though the composition of such misconduct is similar).
Importantly, and in contrast to the other statistics in Table 1, the risk statistics in Panel D are
only measured among released defendants. Pretrial misconduct potential is, by definition, unobserved
among detained individuals despite being the key legal objective for bail judges.

4.2 Quasi-Experimental Judge Assignment

Our empirical strategy exploits variation in pretrial release from the quasi-random assignment of
judges who vary in the leniency of their bail decisions. There are three features of the NYC pretrial
system that make it an appropriate setting for this research design.

First, NYC uses a rotation calendar system to assign judges to arraignment shifts in each of the
five county courthouses in the city, generating quasi-random variation in bail judge assignment for
defendants arrested at the same time and in the same place. Each county courthouse employs a
supervising judge to determine the schedule that assigns bail judges to the day (9 a.m. to 5 p.m.)
and night arraignment shift (5 p.m. to 1 a.m.) in one or more courtrooms within each courthouse.
Individual judges can request to work certain days or shifts but, in practice, there is considerable
variation in judge assignments within a given arraignment shift, day-of-week, month, and year cell.

Second, there is limited scope for influencing which bail judge will hear any given case, as most
individuals are brought for arraignment shortly after their arrest. Each defendant’s arraignment is also
scheduled by a coordinator, who seeks to evenly distribute the workload to each open courtroom at an
arraignment shift. Combined with the rotating calendar system described above and the processing
time required before the arraignment, it is unlikely that police o�cers, prosecutors, defense attorneys,
or defendants could accurately predict which judge is presiding over any given arraignment.

Finally, the rotation schedule used to assign bail judges to cases does not align with the schedule
of any other actors in the criminal justice system. For example, di�erent prosecutors and public
defenders handle matters at each stage of criminal proceedings and are not assigned to particular

sample is also broadly representative in terms of defendant and charge characteristics, with a slightly higher share of
defendants with prior FTAs and rearrests, and a lower share of defendants charged with drug and property crimes.
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bail judges, while both trial and sentencing judges are assigned to cases via di�erent processes. As a
result, we can study the e�ects of being assigned to a given bail judge as opposed to, for example, the
e�ects of being assigned to a given set of bail, trial, and sentencing judges.

Appendix Table A3 verifies the quasi-random assignment of judges to bail cases in the estimation
sample. Each column reports coe�cient estimates from an ordinary least squares (OLS) regression
of judge leniency on various defendant and case characteristics, with court-by-time fixed e�ects that
control for the level of quasi-experimental bail judge assignment. We measure leniency using the leave-
one-out average release rate among all other defendants assigned to a defendant’s judge, following the
standard approach in the literature (e.g., Arnold, Dobbie and Yang, 2018; Dobbie, Goldin and Yang,
2018). Most coe�cients in this balance table are small and not statistically significantly di�erent
from zero, both overall and by defendant race. A joint F -test fails to reject the null of quasi-random
assignment at conventional levels of statistical significance.14

Appendix Table A4 further verifies that the assignment of di�erent judges meaningfully a�ects the
probability an individual is released before trial. Each column of this table reports coe�cient estimates
from an OLS regression of an indicator for pretrial release on judge leniency and court-by-time fixed
e�ects. A one percentage point increase in the predicted leniency of an individual’s judge leads to a
0.96 percentage point increase in the probability of release, with a somewhat smaller first-stage e�ect
for white defendants and a somewhat larger e�ect for Black defendants.

4.3 Observational Comparisons

Table 2 investigates the system-wide level of observed racial disparity in NYC pretrial release rates.
We estimate OLS regressions of the form:

Di = „ + –Wi + X Õ
i
— + ‘i (13)

where Di is an indicator equal to one if defendant i is released, Wi is an indicator for the defendant
being white, and Xi is a vector of controls. Column 1 of Table 2 omits any controls in Xi, column 2
adds court-by-time fixed e�ects to adjust for unobservable di�erences at the level of quasi-experimental
bail judge assignment to Xi, and column 3 further adds the defendant and case observables from Table
1. Such regressions generally follow the conventional benchmarking approach from the literature (e.g.,
Gelman, Fagan and Kiss, 2007; Abrams, Bertrand and Mullainathan, 2012); we again note that the
defendant and case observables included in column 3 can either increase or decrease OVB.

Table 2 documents both statistically and economically significant release rate disparities between
white and Black defendants in NYC. The unadjusted white-Black release rate di�erence – is estimated
in column 1 at 7.2 percentage points, with a standard error (SE) of 0.5 percentage points. This
release rate gap is around 10 percent of the mean release rate of 73 percent. The release rate gap
falls slightly, to 6.8 percentage points (SE: 0.5), when we control for court-by-time fixed e�ects. The
gap falls by an additional 24 percent, to 5.2 percentage points (SE: 0.4), when we add defendant and

14Even with the quasi-random assignment of bail judges, the exclusion restriction in our framework could be violated
if judge assignment impacts the probability of pretrial misconduct through channels other than pretrial release. While
the assumption that judges only systematically a�ect defendant outcomes through pretrial release is fundamentally
untestable, we join Arnold, Dobbie and Yang (2018) in viewing it as reasonable here. Bail judges only handle one
decision, limiting the potential channels through which they could a�ect defendants. Pretrial misconduct is also a
relatively short-run outcome, further limiting the role of alternative channels. In a similar setting, Dobbie, Goldin and
Yang (2018) find that there are no independent e�ects of the assigned money bail amount on defendant outcomes. We
explore the robustness of our findings to such e�ects below.
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case observables. These estimates are similar in magnitude to the association, reported in column 3,
between the probability of release and having an additional drug charge (-5.7 percentage points) or
pretrial arrest (-6.8 percentage points) in the past year.

Figure 1 summarizes the distribution of judge-specific release rate disparities across the 268 bail
judges in our sample. We estimate judge-specific disparities from OLS regressions of the form:

Di =
ÿ

j

–jWiZij +
ÿ

j

„jZij + X Õ
i
— + ‘i (14)

where Di is again an indicator equal to one if defendant i is released, WiZij is the interaction between
an indicator for the defendant being white and the fixed e�ects for each judge, Zij are the non-
interacted fixed e�ects for each judge, and Xi is again a control vector. We first estimate Equation
(14) with Xi demeaned, such that the –j captures regression-adjusted di�erence in release rates for
white and Black individuals assigned to judge j. We then compute empirical Bayes posteriors of –j

using standard shrinkage procedures (Morris, 1983). Figure 1 shows the distribution of the racial
disparity posteriors that adjust only for the main judge fixed e�ects and court-by-time fixed e�ects,
following column 2 of Table 2, as well as the distribution of posteriors when we add both defendant and
case observables and court-by-time fixed e�ects, following column 3 of Table 2. Figure 1 also reports
an estimate of the prior mean and standard deviation of –j across judges, as well as the fraction of
judges with positive –j , via the posterior average e�ect approach of Bonhomme and Weidner (2020).15

The distributions of release rate disparity posteriors in Figure 1 are located well above zero,
suggesting that nearly all judges in our sample release white defendants at a higher rate than Black
defendants. We estimate that only 4.1 percent (SE: 1.3) of judges in our sample release a larger share of
Black defendants in the specification that adjusts for court-by-time fixed e�ects, while only 5.9 percent
(SE: 1.5) are estimated to release a larger share when we additionally adjust for defendant and case
observables. Figure 1 nevertheless shows considerable variation in the magnitude of the release rate
disparities across judges. The standard deviation of –j is estimated at 4.0 percentage points (SE:
0.3) when we adjust for court-by-time fixed e�ects, and 3.3 percentage points (SE: 0.3) when we
additionally adjust for defendant and case observables. The average judge-specific disparities, which
di�er from the system-wide averages in Table 2 due to di�erences in weighting, are 6.6 percentage
points (SE: 0.2) when we adjust for court-by-time fixed e�ects, and 5.0 percentage points (SE: 0.2)
when we additionally adjust for defendant and case observables.

The results from Table 2 and Figure 1 confirm large and pervasive racial disparities in NYC bail
decisions, both in the raw data and after accounting for observable di�erences between white and Black
defendants. These observational estimates suggest bail judges may be discriminating against Black
defendants, but are not conclusive as we cannot directly adjust for unobserved misconduct potential
Y ú

i
and could thus either over- or understate the true level and distribution of discrimination in

the NYC pretrial system. We next develop and apply a quasi-experimental approach to adjust for
unobserved misconduct potential Y ú

i
and remove OVB from these observational comparisons.

15See Appendix B.4 for the details of the conventional empirical Bayes procedures we apply in this section.
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5 Quasi-Experimental Estimates of Racial Discrimination

5.1 Methods

We estimate racial discrimination in pretrial release decisions by rescaling the observational release rate
comparisons in Figure 1 using quasi-experimental estimates of average white and Black misconduct
risk. This quasi-experimental approach leverages first-stage variation in judge leniency but, unlike
standard IV methods, does not require a first-stage monotonicity assumption. We only require that
average misconduct risk among white and Black defendants can be extrapolated from the quasi-
experimental data, and that the judges’ legal objective is well-specified by the econometrician.

The first key insight underlying our approach is that when judges are as-good-as-randomly as-
signed, the problem of measuring unwarranted release rate disparities for individual judges is equiv-
alent to the problem of estimating the average misconduct risk among the full population of Black
and white defendants. The source of OVB in an observational benchmarking comparison is the cor-
relation between race and unobserved misconduct potential among a given judge’s pool of white and
Black defendants. With quasi-random judge assignment, this correlation is common to all judges
and captured by race-specific population misconduct risk. Thus, given estimates of these race-specific
risk parameters, observed release outcomes can be appropriately rescaled to make released white and
Black defendants comparable in terms of their unobserved misconduct potential.

The rescaling that purges OVB from observational comparisons is given by expanding the true
and false negative rates from our definition of racial discrimination in Equation (2):

”T

jr
= E[Dij | Y ú

i
= 0, Ri = r] = E[Dij(1 ≠ Y ú

i
) | Ri = r]

E[1 ≠ Y ú
i

| Ri = r] = E[Di(1 ≠ Yi) | Ri = r, Zij = 1]
1 ≠ µr

(15)

”F

jr
= E[Dij | Y ú

i
= 1, Ri = r] = E[DijY ú

i
| Ri = r]

E[Y ú
i

| Ri = r] = E[DiYi | Ri = r, Zij = 1]
µr

(16)

where the third equalities in both lines follow from quasi-random judge assignment and the definition
of mean risk µr = E[Y ú

i
| Ri = r]. Substituting these expanded true and false negative rates into

Equation (2) yields:

�j =E[Di(1 ≠ Yi) | Ri = w, Zij = 1] 1 ≠ µ̄

1 ≠ µw

+ E[DiYi | Ri = w, Zij = 1] µ̄

µw

≠ E[Di(1 ≠ Yi) | Ri = b, Zij = 1] 1 ≠ µ̄

1 ≠ µb

≠ E[DiYi | Ri = b, Zij = 1] µ̄

µb

=E[�iDi | Ri = w, Zij = 1] ≠ E[�iDi | Ri = b, Zij = 1] (17)

where:

�i = (1 ≠ Yi)
1 ≠ µ̄

1 ≠ µRi

+ Yi

µ̄

µRi

> 0 (18)

The rewritten definition of discrimination in Equation (17) shows that judge j’s level of discrimination
�j is given by the –j coe�cients in a simple benchmarking regression, where the release decisions
Di of each individual are rescaled by a positive factor �i. This �i reweights the sample to make
released white and Black defendants comparable in terms of their unobserved misconduct potential. It
therefore reveals the extent to which each judge discriminates against white and Black defendants with
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identical misconduct potential, even though misconduct potential is unobserved and cannot be directly
conditioned on. Equation (18) shows that �i is a function of observed misconduct outcomes Yi and
the unobserved average race-specific misconduct risk parameters µr, where again µ̄ = µwpw + µbpb.
The key econometric challenge is therefore to estimate average misconduct risk µr among the full
population of white and Black defendants.

Appendix Table A5 uses a simple numerical example to illustrate how our rescaling approach allows
us to measure discrimination in bail decisions, even though misconduct potential is unobserved and
cannot be directly conditioned on. We suppose that there are two types of hypothetical defendants
in our example, high-risk H types and low-risk L types. We assume the judge is type-neutral when
making release decisions. If the defendant has Y ú

i
= 1, then there is an 80 percent chance the

defendant is released regardless of type. If the defendant has Y ú
i

= 0, then there is a 20 percent
chance the defendant is released regardless of her type. Thus, while the judge receives a signal of
the defendant’s unobserved misconduct potential, this signal is not perfectly predictive, implying the
judge will release some defendants who will misbehave and detain some defendants that would not
misbehave. We also assume that 75 of the 100 hypothetical H-type defendants have misconduct
potential (Y ú

i
= 1) but only 25 of the 100 hypothetical L-type defendants have misconduct potential,

such that µH = 0.75 and µL = 0.25. Panel A shows that this judge therefore has a release rate of 0.65
for L-type defendants but a release rate of 0.35 for H-type defendants, meaning that a conventional
benchmarking regression would find that L-type defendants have a 30 percentage point higher release
rate than H-type defendants (–j = 0.3) despite the judge being type-neutral.

Panel B of Appendix Table A5 shows how discrimination can be measured in this simple numerical
example with observational release rate comparisons that are rescaled using average misconduct risk.
Following Equations (17) and (18), we compute �i = 0.50

0.75 = 2/3 for released H-type defendants with
Yi = 0 and released L-type defendants with Yi = 1, and �i = 0.50

0.25 = 2 for released L-type defendants
with Yi = 1 and released H-type defendants with Yi = 0. The rescaling factor thus up-weights the
release rates of individuals who are relatively less common in each type (risky L-type defendants and
non-risky H-type defendants), while down-weighting the release rates of individuals who are relatively
more common (non-risky L-type defendants and risky H-type defendants).16 In this way, the rescaling
factor equalizes the proportion of risky and non-risky defendants by type, meaning that a rescaled
benchmarking regression would correctly find that H- and L-type defendants with the same misconduct
potential have identical release rates (�j = 0).

The second key insight underlying our approach is that the average race-specific misconduct risk
parameters that enter Equation (17) can be estimated from quasi-experimental variation in pretrial
release and misconduct rates. To build intuition for our approach, consider a setting with as-good-
as-random judge assignment and a supremely lenient bail judge jú who releases nearly all defendants
regardless of their race or potential for pretrial misconduct. This supremely lenient judge’s race-specific

16This pattern of up- and down-weighting generally arises when H-type defendants have higher misconduct risk:
i.e., when µH > µ̄ > µL. In such cases, observations of released L-type defendants who subsequently o�end are
up-weighted (Yi ≠ µL > 0 and µ̄ ≠ µL > 0 so �i > 1), as are observations of released H-type defendants who do
not subsequently o�end (Yi ≠ µH < 0 and µ̄ ≠ µH < 0, so again �i > 1). Equation (17) also shows that �j =
–j ≠ (E[(1 ≠ �i)Di | Ri = w, Zij = 1] ≠ E[(1 ≠ �i)Di | Ri = b, Zij = 1]), so that our rescaling can be understood as
subtracting OVB from the observational comparisons with OVB given by a (1 ≠ �i)-scaled release rate disparity.
Conventional and rescaled benchmarking regressions are identical when average misconduct risk does not vary by type:
if µH = µL = µ̄ then �i = 1 for all defendants.
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release rate among both Black and white defendants is close to one:

E[Di | Zijú = 1, Ri = r] = E[Dijú | Ri = r] ¥ 1 (19)

making the race-specific misconduct rate among defendants she releases close to the race-specific
average misconduct risk in the full population:

E[Yi | Di = 1, Zij = 1, Ri = r] = E[Y ú
i

| Dijú = 1, Ri = r] ¥ E[Y ú
i

| Ri = r] = µr (20)

where the first equality in both expressions follows by quasi-random assignment. Without further
assumptions, the decisions of a supremely lenient and quasi-randomly assigned judge can therefore be
used to estimate the average misconduct risk parameters needed for our discrimination measure.

In the absence of such a supremely lenient judge, the required average misconduct risk parameters
can be estimated using model-based or non-parametric extrapolations of release and misconduct rate
variation across quasi-randomly assigned judges. This approach is analogous to the standard regres-
sion discontinuity approach of extrapolating average potential outcomes to a treatment cuto� from
nearby observations. Here, released misconduct rates are extrapolated from quasi-randomly assigned
judges to the release rate cuto� (of one) given by a hypothetical supremely lenient judge. Mean risk
estimates may, for example, come from the vertical intercept, at one, of linear, quadratic, or local
linear regressions of estimated released misconduct rates E[Y ú

i
| Dij = 1, Ri = r] on estimated release

rates E[Dij | Ri = r] across judges j within each race r. As we show below, extrapolations may also
come from a model of judge behavior. Absent any extrapolations, conservative bounds on mean risk
may be obtained from the released misconduct rates of highly (but not supremely) lenient judges.
Each of these approaches build on recent advances in ATE estimation with multiple discrete instru-
ments (e.g., Brinch, Mogstad and Wiswall, 2017; Mogstad, Santos and Torgovitsky, 2018; Hull, 2020)
and a long literature on “identification at infinity” in sample selection models (e.g., Chamberlain,
1986; Heckman, 1990; Andrews and Schafgans, 1998). Importantly, they can be justified without a
conventional monotonicity assumption, in contrast to some of the recent literature.17

5.2 Results

Mean Risk by Race

Figure 2 illustrates the quasi-experimental variation in judge release rates and released misconduct
rates in NYC. The horizontal axis plots estimates of release rates E[Dij | Ri = r] for each judge j

and each race r, obtained from the earlier benchmarking regression in Equation (14) that adjusts for
court-by-time fixed e�ects. The vertical axis plots the corresponding estimates of released misconduct

17To see why a conventional monotonicity assumption is not needed to estimate mean risk by extrapolation, consider
a simple model in which each judge’s release decisions are given by Dij = 1[Ÿj Ø ‚ij ] where ‚ij | Ÿj , ⁄j ≥ U(0, 1)
without loss and E[Y ú

i
| ‚ij , Ÿj , ⁄j ] = µ + ⁄j(‚ij ≠ 1

2 ). This model violates conventional monotonicity, since judges
di�er both in their orderings of individuals by the appropriateness of release (‚ij) and their relative skill at predicting
misconduct outcomes (⁄j). Nevertheless, when E[⁄j | Ÿj ] is constant (linear) in Ÿj , average released misconduct
rates E[Y ú

i
| Dij = 1, Ÿj ] = E[µ + 1

2 ⁄j(Ÿj ≠ 1) | Ÿj ] are linear (quadratic) in release rates E[Dij ] = Ÿj , so that
these extrapolations identify the ATE µ. More flexible extrapolations generally accommodate a broader range of judge
decision-making models by leveraging richer quasi-experimental variation. In the limit, local linear regressions can yield
non-parametric estimates of mean misconduct risk provided there are many lenient judges (Hull, 2020).
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rates E[Y ú
i

| Dij = 1, Ri = r], obtained from the analogous OLS regression:

Yi =
ÿ

j

fljWiZij +
ÿ

j

’jZij + X Õ
i
“ + ui (21)

estimated among released individuals (Di = 1), where again Xi contains court-by-time fixed e�ects
and is demeaned to include all judge indicators. These specifications leverage an auxiliary assumption
of linear conditional expectations of Dij and Y ú

i
in order to tractably accommodate the conditional

random assignment of bail judges given the court-by-time fixed e�ects.18 We do not include other
defendant and case observables in Xi, which will allow our subsequent estimates to capture discrimi-
nation on seemingly race-neutral characteristics. The necessary inclusion of court-by-time fixed e�ects
implies, however, that we will be unable to detect indirect discrimination across courts or times of
the day. For example, we would be unable to detect if judges tend to be stricter for all defendants in
courts or times of that day that tend to see a higher share of Black defendants.

Figure 2 shows significant variation in race-specific release rates across judges, with several judges
releasing a high fraction of their defendants for each race. Released misconduct rates tend to increase
with judge leniency for both races, as would be predicted by a behavioral model in which the more
lenient judges release riskier defendants at the margin. This pattern is shown by the two solid lines
in Figure 2, representing the race-specific lines-of-best-fit through the quasi-experimental data. The
lines-of-best-fit are obtained by OLS regressions of judge-specific released misconduct rate estimates
on judge-specific release rate estimates, with the judge-level regressions weighted inversely by the
variance of misconduct rate estimation error. We also plot curves-of-best-fit from judge-level quadratic
and local linear specifications as dashed and dotted lines, respectively, with both specifications again
weighted inversely by the variance of misconduct rate estimation error. The simple linear specification
fits the local IV variation well, with quadratic and local linear specifications yielding similar fits across
much of the leniency distribution.

The vertical intercepts of the di�erent curves-of-best-fit, at one, provide di�erent estimates of the
race-specific mean risk parameters µr. These estimates are reported in Panel A of Table 3. The
simplest linear extrapolation, summarized in column 1, yields precise mean risk estimates of 0.338
(SE: 0.007) for white defendants and 0.400 (SE: 0.006) for Black defendants.19 This extrapolation
suggests that the average misconduct risk within the population of potential Black defendants is 6.2
percentage points higher than among the population of potential white defendants in this setting.
Per the discussion in Section 3.3, such a racial gap in misconduct risk is likely to generate OVB in
observational release rate comparisons.

The quadratic and local linear extrapolations of quasi-experimental variation yield similar race-
specific mean risk estimates, as can be seen from Figure 2. The quadratic fit suggests a slight non-
linearity in the relationship between judge leniency and released misconduct rates, with a slightly
concave dashed curve for white defendants and a closer to linear dashed curve for Black defendants.

18If Zi is independent of (Y ú
i

, Di1, . . . , DiJ , Ri) given Xi and E[Y ú
i

| Dij = 1, Ri = r, Xi] = Âjr + XÕ
i
“, then

E[Yi | Ri, Zi, Xi, Di = 1] is linear in (WiZi1, . . . , WiZiJ , Zi1, . . . , ZiJ , XÕ
i
)Õ, as in Equation (21). Analogously, if

E[Dij | Ri = r, Xi] = „jr + XÕ
i
—, under conditional random assignment E[Di | Ri, Zi, Xi] is linear as in Equation (14).

Appendix Table A6 relaxes the linearity assumption by estimating separate regression models for each NYC borough
and averaging the resulting unwarranted disparities by a borough’s share of cases. Reassuringly, we find similar (though
less precise) estimates in in this specification.

19All standard errors in this and subsequent sections are obtained from a bootstrap procedure which accounts for the
first-step estimation of the judge- and race-specific release rates and released misconduct rates.
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Column 2 of Table 3 shows that the former nonlinearity translates to a somewhat lower estimate
of white mean risk, at 0.319 (SE: 0.021), with a similar estimate of Black mean risk, at 0.394 (SE:
0.021). Near one, the non-parametric fit of Figure 2 coincides with the linear fit for white defendants
and is above both the quadratic and linear fit for Black defendants, yielding mean risk estimates in
column 3 of 0.346 (SE: 0.014) and 0.436 (SE: 0.016), respectively. The implied racial gap in risk—and
thus the potential for OVB—rises with these more flexible extrapolations, to 7.5 percentage points in
column 2 and 9.0 percentage points in column 3. We take the most flexible local linear extrapolation
as our baseline specification for analyzing racial discrimination in NYC, which we show below gives
the most conservative estimate of average discrimination. We also explore robustness to a wide range
of alternative mean risk estimates below.

The extrapolations in Figure 2 yield accurate mean risk estimates when judge release rules are
accurately parameterized or when there are many highly lenient judges. Appendix Figure A1 validates
our extrapolations by plotting race-specific extrapolations of average predicted misconduct outcomes,
among released defendants, in place of actual released misconduct averages in Figure 2. We first
construct predicted misconduct outcomes Ŷ ú

i
using the fitted values from an OLS regression of actual

pretrial misconduct Y ú
i

on the controls in column 3 of Table 2 in the subsample of released defendants.
We then plot estimates of E[Ŷ ú

i
| Dij = 1, Ri = r] and E[Dij = 1 | Ri = r], constructed as in Figure

2, in Appendix Figure A1. Since Ŷ ú
i

can be computed for the entire sample, we also include the
overall averages E[Ŷ ú

i
|, Ri = r] that are analogous to the race-specific ATEs of interest. Figure

A1 shows that each of the linear, quadratic, and local linear extrapolations of predicted misconduct
rates yields similar and accurate estimates of the overall actual averages. The 95 percent confidence
intervals of the local linear extrapolations, for example, include the actual Black average and only
narrowly exclude the actual white average. These results build confidence for the extrapolations of
actual pretrial misconduct outcomes in this setting.20

Racial Discrimination

Panels B and C of Table 3 summarize the estimates of unwarranted racial disparities �j given the
corresponding ATE estimates in Panel A. These estimates are obtained from the sample analogue of
Equation (9), noting that a judge’s true negative rates can be written:

”T

jr
= E[Dij | Y ú

i
= 0, Ri = r] = (1 ≠ E[Y ú

i
| Dij = 1, Ri = r])E[Dij | Ri = r]

1 ≠ µr

(22)

and similarly for her false negative rate ”F

jr
, while µ̄ = µwpw + µbpb. We use the regression-adjusted

estimates of E[Dij | Ri = r] and E[Y ú
i

| Dij = 1, Ri = r] from Figure 2 and the sample share of Black
defendants to complete this formula. Case-weighted averages of the resulting �j estimates, reported
in Panel B, estimate system-wide discrimination. We also compute empirical Bayes posteriors for
individual �j again via standard shrinkage procedures (Morris, 1983). Summary statistics for the
judge-level prior distribution (estimated as in Figure 1) are reported in Panel C.

We find that approximately two-thirds of the system-wide release rate disparity between white
and Black defendants in NYC is explained by racial discrimination, with about one-third explained

20Appendix Table A7 explores the sensitivity of our extrapolations to estimation error in judge release rates, which
may attenuate their estimated relationship with released misconduct rates. We do so by first applying empirical Bayes
shrinkage to the release rate estimates, separately by race. This exercise yields very similar results, suggesting negligible
bias from first-step estimation error which is consistent with the fact that we observe many cases per judge (Ø100).
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by unobserved di�erences in pretrial misconduct risk. The local linear extrapolations yield the most
conservative estimate of system-wide discrimination in Table 3, implying that 62 percent (4.2 percent-
age points) of the case-weighted average disparity of 6.8 percentage points in Table 2 can be explained
by discrimination. By comparison, both the linear and quadratic extrapolation-based estimates of
race-specific mean risk imply that 79 percent (5.4 percentage points) of the average benchmarking
disparity can be explained by racial discrimination. We thus find that unobservable di�erences in de-
fendant risk can explain 21 to 38 percent (1.4 to 2.6 percentage points) of the average benchmarking
disparity that remains after adjusting for court-by-time fixed e�ects.21

Appendix Table A8 illustrates how our rescaling approach yields this finding of significant racial
discrimination in NYC bail decisions, following the simple numerical example in Appendix Table A5.
We use the benchmark local linear estimates of mean risk to estimate the number of white and Black
defendants with and without misconduct potential in column 1 of Panel A. In column 2, we combine
these estimates with estimates of release and released misconduct rates adjusted by court-by-time
fixed e�ects to compute the number of released defendants in each race and misconduct category,
as in Equation (22). This calculation yields the case-weighted average observational disparity of 6.8
percentage points in column 6. In Panel B, we use the local linear estimates of mean risk to compute
and apply the appropriate rescaling factor �i. Our baseline estimates of average misconduct risk are
µw = 0.346 for white defendants and µb = 0.436 for Black defendants. Combining these estimates
with the share of white and Black defendants in our sample yields an overall average misconduct
risk of µ̄ = 0.392. Following Equations (17) and (18), these estimates yield a rescaling factor of
�i = 1≠0.392

1≠0.346 = 0.928 for released white defendants with Yi = 0, �i = 0.392
0.436 = 0.901 for released

Black defendants with Yi = 1, �i = 0.392
0.346 = 1.137 for released white defendants with Yi = 1, and

�i = 1≠0.392
1≠0.436 = 1.077 for released Black defendants with Yi = 0. Thus the rescaling factor up-

weights the release rates of risky white defendants and non-risky Black defendants (who are relatively
less common) while down-weighting the release rates of non-risky white defendants and risky Black
defendants (who are relatively more common). Applying these rescaling factors to the observational
release rates yields a system-wide discrimination estimate of 4.2 percentage points, matching the
estimate in Panel B of Table 3.

Figure 3 plots the full distribution of discrimination posteriors across individual bail judges, again
using the most conservative local linear estimates of mean risk. For comparison, we also include
the distribution of observed racial disparities from our benchmarking model that adjusts only for
the court-by-time fixed e�ects. The former distribution is shifted evenly to the left of the latter
distribution, consistent with nontrivial OVB across the judge-specific estimates. Around 62 percent
of the judge-weighted average benchmarking disparity (4.2 percentage points, out of 6.6 percentage
points) is found to be due to discrimination, the same as the case-weighted decomposition from Panel
B of Table 3. The standard deviation of judge-specific unwarranted disparities remains large, at 3.7
percentage points, though it shrinks somewhat from the 4.0 percentage point standard deviation of
observed release rate disparities. The clear majority of NYC judges have positive �j , at 87.3 percent,
though this share is also smaller than the 95.9 percent predicted by the benchmarking model. Panel
C of Table 3 shows that these statistics are similar across di�erent mean risk estimates.

21We can also use the decomposition (2) to compute the case-weighted disparity in true and false negative rates
generating the overall 4.2 percentage point release rate disparity. From our baseline local linear extrapolation, we
obtain an average ”T

jw
≠ ”T

jb
of 2.7 (SE: 3.0) and an average ”F

jw
≠ ”F

jb
of 6.6 (SE: 3.8). While noisy, these estimates

suggest judges favor white defendants over Black defendants in both the Y ú
i

= 0 and Y ú
i

= 1 subpopulations.
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Our estimates show that there are both statistically and economically significant inequalities in the
release rate decisions of Black and white defendants with identical potential for pretrial misconduct.
The most conservative estimate in Table 3, for example, implies that the unwarranted release rate gap
could be closed if NYC judges released roughly 2,609 more Black defendants each year (or detained
roughly 2,609 more white defendants). Using an estimate from Dobbie, Goldin and Yang (2018), re-
leasing this many defendants would lead to around $78 million in recouped earnings and government
benefits annually. We can also compare the average unwarranted disparity to other observed determi-
nants of pretrial release. Table 2 shows, for example, that the most conservative 4.2 percentage point
unwarranted disparity estimate corresponds to more than half of the decreased probability in release
associated with having an additional pretrial arrest in the past year (-6.8 percentage points).

Robustness and Extensions

We verify the robustness of our main findings to several deviations from the baseline specification, ex-
ploring alternative estimates of mean risk, definitions of pretrial misconduct, classifications of pretrial
release, and definitions of defendant race.

Mean Risk Estimates: The key inputs to our discrimination measure are race-specific estimates of
mean misconduct risk, given in our baseline specification by a local linear extrapolation of the quasi-
experimental variation in Figure 2. Appendix Figure A2 and Appendix Table A9 examine sensitivity
to di�erent ranges of these inputs, showing that our finding of pervasive racial discrimination does
not depend on any particular extrapolation. Appendix Figure A2 first plots the range of system-wide
unwarranted disparity that we would obtain from di�erent pairs of white and Black mean risk inputs.
The estimated level of discrimination against Black defendants generally decreases as the assumed
value of Black misconduct risk increases, holding the value of white misconduct risk constant. Racial
di�erences in misconduct risk would have to be extremely large, however, before we could conclude
there is no discrimination against Black defendants. For example, at our baseline estimate of white
mean risk (indicated by the dotted vertical line), the white-Black di�erence in misconduct risk would
need to be more than 17 percentage points (88 percent) larger than our most conservative estimates
in order for us to conclude that there is no discrimination against Black defendants.

Appendix Table A9 also shows that most of the mean risk inputs in Appendix Figure A2, and
importantly all inputs which would imply no racial discrimination, can be ruled out by the observed
quasi-experimental data. Panel A reports bounds on white and Black misconduct risk implied by the
observed race-specific average released misconduct rate of judges with a given release rate, assuming
that either none or all of the remaining detained defendants of each race have misconduct potential
(see Appendix B.5 for details). Panels B and C report corresponding bounds on the unwarranted
disparity statistics by finding the pair of mean risk estimates which minimize and maximize each
statistic in these ranges. The bounds on each statistic widen as a lower release rate is used, since a
wider range of mean risk estimates are consistent with the increasingly selected released misconduct
rates. Nevertheless, we continue to find economically significant levels of racial discrimination in each
column, even when a relatively low release rate of 0.80 is used to construct the bounds.

Finally, Appendix Table A10 shows that we obtain similar mean risk estimates when extrapolating
released misconduct rates that adjust for defendant and case observables, as in column 3 of Table 2.
Panel A shows, for example, that the local linear extrapolation yields white and Black mean risk
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estimates of 0.352 and 0.423, respectively, compared to the 0.346 and 0.436 in our baseline Table 3
which does not adjust for defendant and case observables. We obtain slightly smaller unwarranted
disparity estimates in Panel B of Appendix Table A10, suggesting that some of the unwarranted
disparity we find in Table 3 is driven by discrimination on seemingly race-neutral characteristics.
Benchmarking comparisons that adjust for these characteristics thus remove some of the drivers of
discrimination in NYC bail decisions, as well as some amount of omitted variables bias. However, we
do not observe all of the non-race characteristics that judges may base decisions on. Therefore, this
analysis cannot tell us the fraction of discrimination which arises through discrimination on non-race
characteristics, as there could be further discrimination on unobserved characteristics that we cannot
detect in Appendix Table A10.

Misconduct Outcome: Our baseline measure of racial discrimination assumes that the sole legal objec-
tive of bail judges is to target pretrial misconduct, and not other objectives or outcomes. When the
legal objective of judges is misspecified, our estimates may su�er from what Kleinberg et al. (2017)
refer to as “omitted payo� bias.” Such bias may arise when, for example, bail judges consider new
crime to be more important than a failure to appear, or if they only target new violent crime. We ex-
plore the empirical relevance of omitted payo� bias in Appendix Table A11, which presents estimates
given these di�erent definitions of the judge’s legal objective. We find similar results when using a
measure of pretrial misconduct that only includes FTA (column 2 of Appendix Table A11) or only
includes new arrests (column 3 of Appendix Table A11). We also find a slightly higher case-weighted
average unwarranted disparity, at 6.8 percentage points, when using a measure of pretrial misconduct
that only includes new arrests for a violent crime (column 4 of Appendix Table A11). These results
are consistent with Kleinberg et al. (2017) and Arnold, Dobbie and Yang (2018), who find similar
evidence of prediction errors and racial bias in bail decisions, respectively, using di�erent measures of
the pretrial misconduct outcome.

A related concern is that measurement error in the judge’s legal objective is systematically corre-
lated with race. This could be an issue if, for example, judges seek to minimize all new crime, not
just new crime that results in an arrest, and if the police are more likely to rearrest Black defen-
dants conditional on having committed a new crime. Gelman, Fagan and Kiss (2007), for example,
find that the NYC Stop, Question, and Frisk program disproportionately targeted minority residents.
With discriminatory policing, we will tend to overestimate the misconduct risk for Black defendants
compared to white defendants and underestimate the total amount of racial discrimination in bail
decisions. It is therefore possible that our estimates reflect a lower bound on the true amount of
racial discrimination in NYC, at least under the plausible assumption that the police are more likely
to rearrest Black defendants conditional on having committed a new crime. Reassuringly, column 2
of Appendix Table A11 shows a similar level of discrimination when we measure pretrial misconduct
using just FTA, which is less subject to this measurement concern.

Release Decision: Our baseline specification abstracts away from the fact that bail judges may set
di�erent levels of monetary bail, taking into account a defendant’s ability to pay, by specifying the
judge’s decision as a binary release indicator. One possibility is that the discrimination we find
is partly driven by judges over-predicting the relative ability of Black defendants to pay cash bail,
causing fewer Black defendants to be released than white defendants of identical misconduct risk. We
explore racial di�erences in the ability to pay cash bail in Appendix Table A12, which replaces our
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baseline definition of the judge’s release decision with an indicator for the judge releasing a defendant
on recognizance, without setting cash bail. We find very similar results with this new specification,
with racial discrimination explaining about 55 percent (3.2 percentage points) of the court-by-time
adjusted white-Black ROR rate di�erence of 5.8 percentage points. These results suggest that the
racial discrimination we find in bail decisions is not driven by judges over-predicting the relative
ability of Black defendants to pay cash bail, which is consistent with the fact that the vast majority
of released white and Black defendants are released on recognizance (see Table 1).

Defendant Race: A final consideration is our categorization of defendant race. We categorize defen-
dants as either white (including both non-Hispanic and Hispanic white individuals) or Black (including
both non-Hispanic and Hispanic Black individuals), but judges may also discriminate against Hispanic
white defendants. We explore this possibility in Appendix Table A13, which presents estimates with
defendants categorized as either non-Hispanic white or any racial minority (including Hispanic white
individuals and both non-Hispanic and Hispanic Black individuals). Under this alternative catego-
rization, we find larger estimates of case-weighted average unwarranted disparity, for example, 11.2
percentage points for the local linear extrapolation in column 3. One important caveat to these results
is that the extrapolation for white defendants in this specification relies on much fewer observations,
which leads to less consistent results across specifications. Therefore, these results should be inter-
preted with caution, as our procedure relies on consistent estimates of mean risk that may be more
di�cult to obtain with fewer observations.

Defendant Heterogeneity

Appendix Table A14 explores heterogeneity in racial discrimination across defendants with di�erent
observable characteristics. We report estimates using a conditional version of our baseline local linear
approach that restricts to defendants with a particular criminal record or charge.22 Panel A shows
that the average misconduct risk within di�erent subgroups of Black defendants is consistently higher
than the average misconduct risk of white defendants in the same subgroup, with point estimates
for the racial di�erence in average misconduct risk ranging from 3.5 percentage points for defendants
charged with a DUI and 8.3 percentage points for defendants charged with a misdemeanor, to 11.5
percentage points for defendants charged with a drug o�ense, 12.1 percentage points for defendants
charged with a property o�ense, 14.3 percentage points for defendants charged with a felony, and 17.4
percentage points for defendants charged with a violent o�ense. The common finding of a positive
racial gap in average misconduct risk implies that observed release rate disparities will su�er from
omitted variables bias in each subgroup.

Panel B of Appendix Table A14 shows that we find discrimination against Black defendants in each
subgroup, with point estimates for the extent of discrimination ranging from 1.0 percentage points for
defendants charged with a property o�ense and 2.4 percentage points for defendants charged with a
DUI and defendants without a prior criminal charge, to 3.0 percentage points for defendants charged
with a felony, 4.6 percentage points for defendants charged with a misdemeanor, 5.5 percentage points
for defendants charged with a drug o�ense, and 10.7 percentage points for defendants charged with a
violent o�ense. The estimates are generally precisely estimated, with the exception of felony o�enses

22We require that judges observe at least 25 cases involving defendants with the indicated criminal record or charge
in each specification, meaning that these results include fewer judges than our main results.
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and violent o�enses where we have large standard errors. Panel C shows a similar pattern of results
in the average unwarranted disparity across judges, with significant discrimination against Black
defendants in each subgroup and larger but less precise estimates for felonies and violent o�enses.

Judge Heterogeneity

Finally, Table 4 explores the heterogeneity in racial discrimination across di�erent judges in our
sample. Columns 1-5 report OLS estimates of the unwarranted disparity posteriors on indicators for
whether a judge is newly appointed during our sample period, exhibits above-average leniency, or
has an above-median share of Black defendants (as measured before the adjustment for court-by-time
fixed e�ects, which makes Black defendant shares balanced across judges). We also include indicators
for what county courtroom the judge hears most cases in. Columns 6-7 investigate the persistence
of our discrimination measure over time by computing separate unwarranted disparity posteriors in
the first and second half of cases that each judge sees in our sample period, recomputing the race-
specific mean risk estimates in each half, and estimating OLS regressions of current unwarranted
disparity posteriors on lagged unwarranted disparity posteriors and judge observables. In both sets of
analyses, regressions of discrimination posteriors on judge observables can be interpreted through the
posterior average e�ect framework of Bonhomme and Weidner (2020). We weight these regressions by
estimates of the inverse posterior variance of the unwarranted disparities, with similar results obtained
from weighting by judge caseload.

Columns 1-5 of Table 4 shows significantly lower levels of discrimination among newly appointed
judges, more lenient judges, and judges with a higher share of Black defendants. Judges who are newly
appointed in our sample have 1.6 percentage point lower unwarranted disparities on average, while
judges with above-average leniency have 0.9 percentage point lower unwarranted disparities. Judges
assigned an above-median share of Black defendants have 1.2 percentage point lower unwarranted
disparities. We also find that judges who primarily see cases in the Manhattan, Queens, and Richmond
county courtrooms tend to exhibit higher levels of discrimination, while those who primarily see cases
in Brooklyn (the omitted reference category) and the Bronx have lower levels of discrimination. We
find, for example, that unwarranted disparities are 3.6 percentage points higher for Manhattan judges
compared to Brooklyn judges. Together, the observable judge characteristics available in our data
explain about 41 percent of the variation in the unwarranted disparity posteriors, with the courtroom
indicators alone explaining about 35 percent of the variation in unwarranted disparities.

Columns 6-7 of Table 4 show that the judge-specific discrimination estimates are highly correlated
over time, with an autoregressive coe�cient of 0.56. Lagged unwarranted disparities alone explain
about 25 percent of the variation in current unwarranted disparities, with the lagged disparity and ob-
servable judge characteristics explaining about 35 percent. We also note that the average unwarranted
disparity in the second half of judge cases is somewhat larger, at 5.6 percentage points, suggesting
that discrimination may increase with judge experience.

Taken together, the results from this section robustly show that there is substantial racial dis-
crimination in NYC bail decisions, both on average and for most defendants and judges, and that
judge-specific estimates of discrimination are both predicted by observable characteristics and cor-
related over time. However, these results do not speak to whether such discrimination is driven by
racial bias or statistical discrimination, nor whether we can reliably target and potentially reduce
racial discrimination using existing data. We next consider a framework to answer these questions.
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6 MTE Estimates of Bias and Statistical Discrimination

6.1 Methods

We develop and estimate a hierarchical marginal treatment e�ects (MTE) model that imposes ad-
ditional structure on our quasi-experimental variation to investigate whether discrimination in bail
decisions is driven by racial bias or statistical discrimination, and to conduct policy simulations. Build-
ing on the illustrative model in Section 3.2, we suppose that judges base release decisions on noisy
signals of true misconduct potential. We allow for judge- and race-specific risk preferences and signal
quality, with the latter allowing heterogeneous race-specific predictive skill across judges (in violation
of conventional first-stage monotonicity). The model implies a distribution of judge- and race-specific
MTE curves that can be used to estimate racial bias at the margin of release, as well as to measure
racial di�erences in average risk or signal quality that can generate statistical discrimination.

As before, we model judge risk signals as ‹ij = Y ú
i

+ ÷ij , where ÷ij | Y ú
i

, (Ri = r) ≥ N(0, ‡2
jr

)
denotes the noise in judge j’s risk signals for defendants of race r. Signal quality is given by the
inverse standard deviation of noise, ·jr = 1/‡jr, such that higher ·jr corresponds to more precise risk
signals. Judges with higher ·jr can be thought of as having a richer information set or as being more
skilled at inferring true misconduct potential from a common information set. Judges combine these
race-specific signals ·jr with potentially biased prior beliefs µ̃jr of mean misconduct risk µr for each
race r and an understanding of the signal-generating process. The judges’ risk posteriors pj(‹ij ; Ri)
are therefore potentially biased solutions to the binary classification problem of whether defendant i

would fail to appear or be rearrested for a new crime if released (Y ú
i

= 1), given the individual’s race
r and noisy misconduct signal ‹ij . Appendix B.2 derives these posterior functions and shows that
they are strictly increasing in the risk signal. Given release benefits fijr, the release decisions of each
risk-neutral judge therefore follow a signal-threshold rule of:

Dij = 1[fijRi Ø pj(‹ij ; Ri)] = 1[ŸjRi Ø Y ú
i

+ ÷ij ] (23)

where Ÿjr = p≠1
j

(fijr; r) is an implicit function of judge j’s release benefit fijr, subjective risk belief
µ̃jr, and risk signal quality ·jr for defendants of race r. Appendix B.6 shows that when judges respond
to misconduct risk, such that ”T

jr
> ”F

jr
, there exists a signal threshold Ÿjr and signal quality ·jr > 0

which rationalize the reduced-form true and false negative rates. Absent further restrictions, this
model is thus without observational loss so long as judge release decisions are better-than-random.

When known for each race, a judge’s risk threshold Ÿjr and signal quality ·jr can be used to
characterize the extent of racial bias in release decisions. As discussed in Section 3.2, with accurate
beliefs the average misconduct outcomes at the margin of pretrial release capture the race-specific
release benefits fijr = E[Y ú

i
| pj(‹ij ; r) = fijr] = E[Y ú

i
| Y ú

i
+÷ij = Ÿjr], which can be used to compute

racial bias for judge j.23 These marginal released outcomes are known functions of Ÿjr and ·jr, and
represent marginal treatment e�ects (of release on pretrial misconduct) for defendants at the margin
of release. Arnold, Dobbie and Yang (2018) use marginal released outcomes to test for racial bias
among quasi-randomly assigned bail judges under an assumption of first-stage monotonicity, which

23Here, as before, we consider racial bias due either to racial preferences or biased beliefs. Appendix B.2 shows how
di�erences in release benefits and prior risk beliefs are observationally equivalent in this model. Both terms enter the
Ÿjr multiplicatively, such that for any Ÿ œ R and ·jr > 0 there exists a set of fijr and µ̃jr (each ranging from 0 to 1)
with Ÿjr = Ÿ. This equivalence reflects the general di�culty of disentangling racial bias due to biased beliefs (as in
Bordalo et al., 2016) from racial bias due to taste-based bias (as in Becker, 1957).
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here imposes ÷ij = ÷i (and thus ·jr = ·r) to be common to all judges, such that judges act as though
there is a common ordering of defendants (of each race) with regards to their appropriateness for
release. Under this monotonicity restriction, the race-specific marginal released outcomes needed to
test for bias can be estimated with conventional MTE estimation methods.

Our first insight here is that knowledge of Ÿjr and ·jr can also be used to measure the extent of
statistical discrimination. As discussed in Section 3.2, statistical discrimination arises when judges
act on risk predictions that are a�ected by racial di�erences in either mean misconduct risk µr or
signal quality ·jr. Mean risk for each race r is given by integrating the marginal released outcome (or
MTE) curve µjr(Ÿ) = E[Y ú

i
| Y ú

i
+ ÷ij = Ÿ] for each judge j over the distribution of her risk signals.

The slopes of these curves capture the quality of a judge’s risk signals. Relatively more precise signals
for white defendants relative to Black defendants will, for example, lead to a steeper-sloping µjw(Ÿ)
relative to µjb(Ÿ). More generally, the judge- and race-specific MTE curves µjr(Ÿ) can be used to
calculate the extent of racial discrimination in counterfactuals calculations where a judge’s release
rates are set to equalize marginal released outcomes and eliminate racial bias.

Our second insight is that we can estimate the key Ÿjr and ·jr parameters of the model without
imposing a strong assumption of first-stage monotonicity. By restricting ÷ij = ÷i and thus ·jr = ·r,
monotonicity can be understood to restrict the MTE curves µjr(·) to be common across judges for
each race r, such that variation in judge release rates only reflects di�erences in risk thresholds
Ÿjr. An implication of this restriction is that, absent estimation error, the race-specific release rates
E[Dij | Ri = r] and released misconduct rates E[Y ú

i
| Dij = 1, Ri = r] plotted in Figure 2 will lie on a

single curve determined by the common signal quality ·r and mean risk µr. Given the large number of
cases per judge in NYC, the sizable dispersion we see in the figure is thus indicative of monotonicity
violations. Frandsen, Lefgren and Leslie (2019) formalize this logic by building on similar tests of
monotonicity in the context of quasi-randomly assigned judges (Mueller-Smith, 2015; Norris, 2019)
and elsewhere (Kitagawa, 2015). Appendix Table A15 shows that applying the Frandsen, Lefgren and
Leslie (2019) test to our data yields decisive rejections, in both samples of white and Black defendants,
suggesting conventional monotonicity is unlikely to hold across NYC bail judges.

We therefore substitute the conventional monotonicity restriction with an alternative parameter-
ization of heterogeneity in judge skill, permitting a distribution of MTE curves µjr(·) across judges
rather than restricting µjr(·) = µr(·) across all judges j. We specify the signal quality parameters ·jr

as being log-normally distributed (imposing the domain restriction of ·jr > 0), jointly with the signal
thresholds Ÿjr: ln ·jr ≥ N(–r, Â2

r
) and Ÿjr ≥ N(“r, ”2

r
) with non-zero correlations allowed across j and

r. Appendix B.6 shows how this hierarchical approach can be viewed as parameterizing di�erences in
how judges weigh di�erent defendant characteristics, such as demeanor or prior arrest record.

We estimate the hyperparameters governing the distributions of judge-specific MTE curves by
a simulated minimum distance (SMD) procedure that matches moments of the quasi-experimental
release rate and released misconduct rate variation in Figure 2. This procedure, detailed in Appendix
B.7, first estimates race-specific curves-of-best-fit through race-specific release and released misconduct
rates (as in Section 5.2). We then match the estimated intercept, slope, and curvature of these curves-
of-best-fit, as well as the residual variation in first-step estimates, to the corresponding moments of
simulated quasi-experimental data drawn from di�erent parameterizations of the hierarchical MTE
model. Finally, we use the SMD estimates to compute empirical Bayes posteriors of the marginal
released outcomes and signal quality of each judge and race given the hyperparameter estimates and
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observed quasi-experimental data.
Figure 4 builds intuition for the SMD estimation procedure by showing how di�erences in key

hyperparameters manifest in the quasi-experimental data. We construct this figure by first simulating
draws of Ÿjr and ·jr for a given race r across a large population of judges j with arbitrarily varying
leniency. We then plot the implied distribution of judge release rates E[Dij | Ri = r] and released
misconduct rates E[Y ú

i
| Dij = 1, Ri = r], abstracting away from first-step estimation error. Panels

A and B set the variance of signal quality across judges to zero, satisfying the usual first-stage mono-
tonicity restriction and ensuring that the judge moments fall on a common frontier.24 Panels C and
D then relax monotonicity by allowing signal quality to vary across judges.

Panel A of Figure 4 shows how di�erences in mean misconduct risk µr lead to di�erences in the
vertical intercept of these curves at one, or (per the discussion in Section 5.1) the release rate of a
hypothetical supremely lenient judge. These vertical intercepts correspond to model-based extrapo-
lations of the quasi-experimental data, in contrast to the data-driven extrapolation used previously
in Section 5. Panel B further shows how di�erences in mean signal quality lead to di�erent slopes
of the model-implied curves, with higher ·r resulting in a steeper relationship between the share of
defendants that a judge releases and the extent of pretrial misconduct among the released. When we
relax first-stage monotonicity in Panels C and D, the quasi-experimental variation no longer falls on
a common frontier (even without estimation error). Panel C shows that a higher variance in signal
quality manifests as more dispersion in released misconduct rates among judges with similar release
rates. Such dispersion generates rejections of the monotonicity tests developed by Frandsen, Lefgren
and Leslie (2019) and others. Finally, Panel D shows that the trend in this distribution of points
becomes more nonlinear when judge signal quality is more highly correlated with judge leniency.

6.2 Results

Racial Bias and Statistical Discrimination

Table 5 reports SMD estimates of mean misconduct risk µr, the average misconduct outcomes for
marginally released defendants µjr(Ÿjr) across judges, and the average judge signal quality ·jr, with
the underlying hierarchical MTE model hyperparameter estimates reported in Appendix Table A16.
The average di�erence in marginal misconduct outcomes between white and Black defendants captures
the overall extent of racial bias, while di�erences in either mean risk or signal quality by race capture
statistical discrimination. Columns 1-3 of Table 5 report estimates under the conventional first-
stage monotonicity restriction that signal quality for defendants of a given race is constant across
judges. Columns 4-6 relax this restriction, allowing judges to have di�erent rankings of defendant
appropriateness for pretrial release.25

24By restricting ·jr = ·r, we still allow for random violations of monotonicity in the sense of ÷ij ”= ÷ik for j ”= k,
so long as ÷ij and ÷ik have the same variance. This assumption is akin to the notion of “average monotonicity” in
Frandsen, Lefgren and Leslie (2019). Similarly, when we allow ·jr to di�er, two judges with the same signal quality
may nevertheless have di�erent rankings ÷ij over defendants.

25The estimates in columns 1-3 of Table 5 are derived from the hyperparameter estimates in columns 1 and 4 of
Appendix Table A16, while columns 4-6 of Table 5 come from columns 2 and 5 of Appendix Table A16. The latter
assumes log signal quality and release thresholds are uncorrelated. A richer model that allows for such correlation is
estimated in columns 3 and 6 of Appendix Table A16. This model produces estimates that are very similar to columns
2 and 5 but also considerably less precise. We therefore take the uncorrelated model as our baseline in Table 5. We note
that our baseline model still allows for correlation between judge signal quality and marginal released outcomes, which
we find to be large in Table 5. Appendix Figure A4 shows how these model hyperparameters fit the quasi-experimental
variation by plotting the model-implied average released misconduct rate across races and judges of di�erent leniencies,
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In both sets of model estimates, we find evidence of both racial bias and statistical discrimination,
with the latter coming from a higher level of average risk (that exacerbates discrimination) and less
precise risk signals (that alleviates discrimination) for Black defendants. Columns 4-6 of Table 5 show,
for example, that the expected misconduct rate of typical white defendants at the margin of pretrial
release is 0.651 (SE: 0.033), compared to 0.576 (SE: 0.021) for Black defendants. The di�erence in
these mean marginally released outcomes is a statistically significant 7.4 percentage points (SE: 3.8),
indicating the existence of racial bias at the margin of release. Table 5 further shows considerable
scope for statistical discrimination. First, the model estimates confirm the finding in Section 5.2
that mean risk is lower among white defendants than Black defendants. In columns 4 and 5, this
di�erence in mean misconduct risk is 5.0 percentage points, about half the size of the 9.0 percentage
point di�erence from our most conservative local linear extrapolation in Table 3 but similar to the
6.0 percentage point gap from our simple linear extrapolation. Second, we find that the typical judge
acts on higher-quality risk signals for white defendants than for Black defendants. Columns 4 and 5
of Table 5 report an average signal quality of 1.385 (SE: 0.104) for white defendants and 0.970 (SE:
0.073) for Black defendants, implying that the typical noise in Black risk signals is roughly 30 percent
more dispersed. Per the discussion of Figure 4, this result is consistent with the white line-of-best-fit
from Figure 2 being somewhat steeper than the Black line-of-best-fit.26 With a majority of white and
Black defendants released, higher white signal quality is likely to o�set racial discrimination against
Black defendants arising from other channels (see Section 3.2). Together, the racial di�erences in
mean risk and signal quality imply that analyses of racial bias alone (as in Arnold, Dobbie and Yang
(2018) and Marx (2018)) would omit an important source of discrimination in this setting.

Table 5 further suggests that the conventional first-stage monotonicity restriction is inconsistent
with judge behavior in this setting. We find significant variation in judge signal quality when we
relax this restriction and allow judges to have di�erent rankings of defendant appropriateness for
pretrial release in columns 4-6, with standard deviations of 0.196 (SE: 0.038) for white defendant
signal quality and 0.163 (SE: 0.017) for Black defendant signal quality. This variation in judge skill is
highly correlated with variation in judge release preferences (which we also find to be sizable), with
covariances between judge signal quality and marginal released outcomes of 0.013 for white defendants
and 0.007 for Black defendants (implying respective correlation coe�cients of 0.83 and 0.67). While
point estimates of the mean parameters with and without conventional monotonicity are qualitatively
similar, the precision is higher without. The standard error on average racial bias, for example, falls
by 17 percent from column 3 to column 6. These precision gains also suggest that the model without
monotonicity provides a better fit to the quasi-experimental data, consistent with a visual analysis
of Figure 2 and the formal tests in Appendix Table A15. At the same time, the similarity of the
estimates across the columns of Table 5 suggests that imposing an invalid assumption of monotonicity
in this setting does not qualitatively a�ect the results.

Appendix Table A19 uses the unrestricted model to quantify the joint role of racial bias and
statistical discrimination in driving racial discrimination in NYC bail decisions. Column 1 summarizes

along with the estimates of release rates and released misconduct rates from Figure 2. Both model-implied curves-of-
best-fit are approximately linear, with slight upward curvature and a more steeply sloping curve for white defendants.

26The mean signal quality estimates in Table 5 suggest that the typical NYC judge predicts misconduct risk with
considerable accuracy for both races. In terms of the model, a ·jr of 1.385 (0.970) yields a receiver operating character-
istic curve with an area under the curve (AUC) statistic of 0.835 (0.753) for white (Black) defendants. By comparison,
Kleinberg et al. (2017) obtain an AUC of 0.707 with a machine learning algorithm trained on FTA outcomes among
released NYC defendants. Simpler logit models which use the observables in column 3 of Table 2 to predict Y ú

i
among

released defendants in our sample have AUCs of around 0.66 (0.65) for white (Black) individuals.
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the baseline degree of discrimination, racial bias, and di�erences in signal quality. The model-based
estimate of average unwarranted disparity, at 4.7 percentage points, is similar but somewhat higher
than our most conservative estimate in Table 3.27 Column 2 shows that average racial discrimination
significantly declines when judge leniency is counterfactually raised or lowered to equalize marginal
released outcomes across white and Black defendants (with Panel A generally raising Black release
rates and Panel B generally lowering white release rates). The average unwarranted disparity falls
from 4.7 percentage points to -4.2 percentage points in Panel A and -0.6 percentage points in Panel B.
This result shows that, absent racial bias, the average unwarranted disparity is reversed, with white
defendants becoming less likely to be released than Black defendants of identical misconduct potential.
As expected, columns 3 and 4 show that this reversal is driven by the relatively higher signal quality
for white defendants. Equalizing signal quality across races for each judge, with and without racial
bias, again results in average racial discrimination against Black defendants. The remaining statistical
discrimination solely due to mean risk di�erences in column 4 yields a mean unwarranted disparity
of 3.9 percentage points when Black leniency and signal quality are counterfactually set, and a mean
unwarranted disparity of 6.2 percentage points when adjusting the corresponding white parameters.28

Judge Heterogeneity

Appendix Tables A21–A22 explore variation in empirical Bayes posteriors of racial bias and signal
quality di�erences, following our analysis of the unwarranted disparity posteriors in Section 5.2. We
again report OLS estimates of the indicated posteriors on indicators for whether a judge is newly
appointed during our sample period, has above-average leniency, has an above-median share of Black
defendants, and for what county courtroom the judge hears most cases in. We again weight these
regressions by estimates of the inverse posterior variance of the outcome variables, with very similar
results again obtained when weighting by judge caseload.29

In Appendix Table A21, we find significantly lower levels of racial bias among newly appointed
judges and less lenient judges. Courtroom indicators are also highly predictive. Together, the ob-
servable judge characteristics explain about 40 percent of the variation in racial bias across judges,
with the courtroom indicators alone explaining 33 percent. We also find a strong relationship between
racial bias and overall discrimination, with our discrimination measure explaining 65 percent of the
variation in the judge-specific bias.

In Appendix Table A22, we find a relatively smaller racial gap in signal quality among newly
appointed judges. Here, judge leniency and whether the judge has an above-median Black defendant
share are not significant predictors of judge-specific signal quality by race. Courtroom indicators and
other observable characteristics of the judges again explain much of the variation in signal quality

27All conclusions in Section 5.2, including the fraction of discriminatory NYC judges and heterogeneity results,
continue to hold with the MTE model estimates of µr (see Appendix Figure A3 and Appendix Table A17).

28Appendix Table A20 uses the structure of the model to investigate alternative measures of racial disparity in NYC
bail decisions. The first row reports the implied average release rates of white and Black defendants holding fixed
misconduct potential Y ú

i
, the di�erence in which gives our model-based estimate of system-wide unwarranted disparity

(4.7 percentage points). The second row instead holds fixed the implied distribution of misconduct signals ‹ij , with
the conditional white-Black release rate gap yielding a measure of “race-blindness.” With an insignificant gap of -0.2
percentage points, the model estimates suggest virtually all discrimination in NYC bail decisions is through seemingly
race-neutral characteristics. Finally, the third row instead holds fixed the implied distribution of misconduct posteriors
pj(‹ij , Ri) instead of true misconduct potential Y ú

i
. This result yields a measure of average racial bias, with the model

implying a release rate gap of 7.1 percentage points due to the release thresholds for white and Black defendants.
29Estimates exploring variation of racial bias and signal quality di�erences by defendant heterogeneity, following

Appendix Table A14, are imprecise but suggest qualitatively similar findings of non-zero racial bias and a positive
white-Black gap in signal quality.
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di�erences, with 38 percent of the variation explained when we include all judge observables. We
find a stronger relationship between signal quality di�erences and overall discrimination than between
racial bias and discrimination, with our discrimination measure explaining 74 percent of the variation
in the judge-specific signal quality.

7 Policy Simulations
Lastly, we use our hierarchical MTE model estimates to investigate whether racial discrimination can
be reliably targeted and potentially reduced with existing data. The model-free analysis in Section
5 shows that judge-specific unwarranted disparities are relatively stable over time, suggesting that
identifying and targeting highly discriminatory judges for an appropriate intervention could help
reduce future discrimination. This analysis also shows that approximately one-third of the observed
release rate disparity between white and Black defendants is explained by unobserved di�erences in
misconduct risk, suggesting that observational regressions may also be useful for targeting judge-
specific discrimination even in the absence of our quasi-experimental analysis. By linking unobserved
di�erences in misconduct risk, racial bias, and statistical discrimination in the release decisions of each
judge, the hierarchical MTE model provides the necessary structure to simulate the e�ects of reducing
racial discrimination using existing observational and quasi-experimental data. We focus on the more
general question of whether discrimination can be reliably targeted using existing data, abstracting
away from the legal status of any particular policy reform.

Table 6 summarizes simulations that target both unwarranted disparity posteriors (columns 2 and
3) and observational disparities (columns 4 and 5). The simulations suppose that individual bail judges
can be subjected to race-specific release rate quotas that eliminate racial disparities, as estimated by
a policymaker using either an observational or quasi-experimental analysis. The simulation based on
the unwarranted disparity posteriors gauges the reliability of the individual predictions given the noise
in our estimation procedure. The simulation based on observational disparities further tests whether
conventional benchmarking regressions may be useful for targeting discrimination despite OVB. To
simulate both sets of policies, we redraw all judge-specific parameters for each race from the estimated
hierarchical MTE model 250 times, along with draws of appropriate estimation error. We use these to
simulate 250 draws of the quasi-experimental variation plotted in Figure 2. We then re-estimate the
MTE model in each draw and compute empirical Bayes posteriors, as in our analysis of the true data.
Finally, we force all or a subset of simulated judges to adjust their race-specific leniencies to the point
where their racial disparities are expected to be eliminated given the simulated model estimates and
posteriors. Panel A simulates closing the targeted disparities for all judges, while Panel B simulates
closing the targeted disparities only for judges in the top quintile of the estimated disparities.30

The simulations suggest that racial discrimination can be reliably targeted using our estimated
unwarranted disparity posteriors, despite estimation error. Targeting the disparities of all judges
using the unwarranted disparity posteriors results in the virtual elimination of racial discrimination
(columns 2 and 3 of Table 6, Panel A), while only targeting judges in the top quintile results in
a 36 percent reduction in the average level of discrimination (columns 2 and 3 of Panel B). These

30Column 1 of Table 6 shows baseline simulated averages of unwarranted disparity, observational disparity, and racial
bias. Column 1 reports an average unwarranted disparity of 4.7 percentage points, which is a bit larger than the
4.2 percentage point average unwarranted disparity found with our local linear extrapolation in Section 5 due to the
di�erence in model mean risk estimates.
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simulated reductions are essentially unchanged when the targeted judges are forced to increase their
leniency (typically for Black defendants) in column 2 or decrease their leniency (typically for white
defendants) in column 3. The average standard deviation of unwarranted disparity across judges,
reported in brackets, is also reduced from around 3.7 percentage points to 2.0 percentage points in
column 2 and 2.6 percentage points in column 3. Observational release rate disparities still remain
when eliminating discrimination, however, as the higher level of mean risk for Black defendants leads
to OVB in the policy target.

Targeting judges with observational comparisons can also reduce discrimination, as the observed
release rate disparities are highly correlated with the unwarranted disparity posteriors. Appendix
Figure A5 shows, for example, that we obtain a high “forecast” coe�cient of 0.903 (SE: 0.010) from
regressing estimated judge-specific unwarranted disparity posteriors on observational disparity pos-
teriors, along with a very high R-squared of 0.968. Consequently, we find in Table 6 that targeting
all judges with simulated observational disparity posteriors reduces average unwarranted disparity
by 6.4 percentage points in column 4 and 6.6 percentage points in column 5. The resulting average
unwarranted disparity estimates of -1.7 and -1.9 percentage points reflects the fact that the level of
observed disparities is too high on average because of OVB. When targeting just the observational
disparity posteriors in the top quintile of judges, the average unwarranted disparity is reduced by 45
percent but not reversed (columns 4 and 5 of Panel B). This finding, that observational benchmarking
regressions can be useful for monitoring and targeting racial discrimination despite OVB, mirrors a
result in the education and healthcare setting on the utility of biased observational measures of school
and hospital quality (e.g., Angrist et al., 2017; Hull, 2020). There, as here, observational rankings
prove to be highly predictive of policy-relevant parameters despite non-zero bias.31

8 Conclusion
Large racial disparities exist at every stage of the criminal justice system, but it is unclear whether
these disparities reflect racial bias, statistical discrimination, or omitted variables bias. This paper
shows that racial discrimination in bail decisions can be measured, regardless of its source, using
observational comparisons of white and Black release rates that are rescaled with quasi-experimental
estimates of average white and Black misconduct risk. Our most conservative estimates from NYC
show that approximately two-thirds of the observed racial disparity in release decisions is due to
racial discrimination, with around one-third due to unobserved racial di�erences in misconduct risk.
Leveraging a novel hierarchical MTE model, we show that this discrimination is driven by both racial
bias and statistical discrimination, with the latter due to a higher level of average risk (that exacer-
bates discrimination) and less precise risk signals (that o�sets discrimination) for Black defendants.
Outcome-based tests of racial bias therefore omit an important source of racial discrimination in NYC
bail decisions, and cannot be used to rule out all possible violations of U.S. anti-discrimination law.

We conclude by noting that the methods we develop to study racial discrimination in bail deci-
sions may prove useful for measuring unwarranted disparities in several other high-stakes settings,

31Our simulations also highlight the impossibility of simultaneously eliminating racial discrimination (on average)
and racial bias (at the margin) when either mean misconduct risk or the risk signal quality di�er for white and Black
defendants (Kleinberg, Mullainathan and Raghavan, 2017). The simulation based on the unwarranted disparity poste-
riors, for example, results in non-zero racial bias against Black defendants of between 1.3 and 3.9 percentage points at
the margin of release.
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both within and outside of the criminal justice system. One key requirement is the quasi-random
assignment of decision-makers, such as judges, police o�cers, employers, government benefits exam-
iners, or medical providers. A second requirement is that the objective of these decision-makers is
both known and well-measured among the subset of individuals that the decision-maker endogenously
selects. Mapping these settings to the quasi-experimental methods in this paper can help distinguish
between di�erent explanations for observed racial disparities and form appropriate policy responses.
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Figure 1: Observational Release Rate Disparities

Strata-Adjusted Disparity (SE)_______________________
 Mean = 0.066 (0.002)
 S.D. = 0.040 (0.003)

Covariate-Adjusted Disparity (SE)

 Frac. Positive = 0.959 (0.013) 

__________________________
 Mean = 0.050 (0.002)
 S.D. = 0.033 (0.003)
 Frac. Positive = 0.941 (0.016)
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Notes. This figure plots the distribution of observational release rate disparity posteriors for the 268 judges in our
sample. Estimates are from the coe�cients of an OLS regression of an indicator for pretrial release on white◊judge fixed
e�ects, controlling for judge main e�ects. Empirical Bayes posteriors are computed using a standard shrinkage procedure,
as described in Appendix B.4. The strata-adjusted disparity line shows the distribution of posteriors when controlling
only for the main judge fixed e�ects and court-by-time fixed e�ects. The covariate-adjusted posterior distribution adds
the baseline controls from Table 2. Means and standard deviations refer to the estimated prior distribution. The
fractions of positive disparities are computed as posterior average e�ects, as described in Appendix B.4.
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Figure 2: Judge-Specific Release Rates and Conditional Misconduct Rates
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Notes. This figure plots race-specific release rates for the 268 judges in our sample against rates of pretrial misconduct
among the set of released defendants. All estimates adjust for court-by-time fixed e�ects. The figure also plots race-
specific linear, quadratic, and local linear curves of best fit, obtained from judge-level regressions that inverse-weight by
the variance of the estimated misconduct rate among released defendants. The local linear regressions use a Gaussian
kernel with a race-specific rule-of-thumb bandwidth.
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Figure 3: Observational and Unwarranted Release Rate Disparities

Strata-Adjusted Disparity (SE)________________________
 Mean = 0.066 (0.002)
 S.D. = 0.040 (0.003)
 Frac. Positive = 0.959 (0.013)

Unwarranted Disparity (SE)______________________
 Mean = 0.042 (0.006)
 S.D. = 0.037 (0.003)
 Frac. Positive = 0.873 (0.036)
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Notes. This figure plots the distribution of observational and unwarranted release rate disparity posteriors for the
268 judges in our sample. Strata-adjusted disparities are estimated by the coe�cients of an OLS regression of an
indicator for pretrial release on white◊judge fixed e�ects, controlling for judge main e�ects and court-by-time fixed
e�ects. Unwarranted disparities are estimated as described in Section 5, using the local linear extrapolations from
Figure 2 to estimate the mean risk of each race. Empirical Bayes posteriors are computed using a standard shrinkage
procedure, as described in Appendix B.4. Means and standard deviations refer to the estimated prior distribution. The
fractions of positive disparities are computed as posterior average e�ects, as described in Appendix B.4.
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Figure 4: Identification of Hierarchical MTE Model Parameters

A. Mean Misconduct Risk, With Monotonicity B. Mean Signal Quality, With Monotonicity
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Notes. This figure plots simulated race- and judge-specific release rates against rates of pretrial misconduct among
the set of released defendants under di�erent parameterizations of the hierarchical MTE model described in the text.
Panel A plots di�erences in mean misconduct risk (µ = 0.4 vs. µ = 0.3) when conventional MTE monotonicity holds
(Â = 0). Panel B plots di�erences in mean signal quality (– = 1 vs. – = 0) when conventional MTE monotonicity
holds (Â = 0). Panel C plots di�erences in signal quality variance (Â = 0.4 vs. Â = 0.1). Panel D plots di�erences in
the covariance between judge signal quality and judge leniency (— = 2 vs. — = 0.1). The default parameterization is
µ = 0.4, – = 0.2, Â = 0.1, — = 0, “ = 1.3, and ” = 1.
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Table 1: Descriptive Statistics

All White Black
Defendants Defendants Defendants

Panel A: Pretrial Release (1) (2) (3)
Released Before Trial 0.730 0.767 0.695

Share ROR 0.852 0.852 0.851
Share Money Bail 0.144 0.144 0.145
Share Other Bail Type 0.004 0.004 0.004
Share Remanded 0.000 0.000 0.000

Panel B: Defendant Characteristics

White 0.478 1.000 0.000
Male 0.821 0.839 0.804
Age at Arrest 31.97 32.06 31.89
Prior Rearrest 0.229 0.204 0.253
Prior FTA 0.103 0.087 0.117

Panel C: Charge Characteristics

Number of Charges 1.150 1.184 1.118
Felony Charge 0.362 0.355 0.368
Misdemeanor Charge 0.638 0.645 0.632
Any Drug Charge 0.256 0.257 0.256
Any DUI Charge 0.046 0.067 0.027
Any Violent Charge 0.143 0.124 0.160
Any Property Charge 0.136 0.127 0.144

Panel D: Pretrial Misconduct, When Released

Pretrial Misconduct 0.299 0.266 0.332
Share Rearrest Only 0.499 0.498 0.499
Share FTA Only 0.281 0.296 0.269
Share Rearrest and FTA 0.220 0.205 0.232

Total Cases 595,186 284,598 310,588
Cases with Defendant Released 434,201 218,256 215,945

Notes. This table summarizes the NYC analysis sample. The sample consists of bail hearings that were quasi-
randomly assigned judges between November 1, 2008 and November 1, 2013, as described in the text. Information on
demographics and criminal outcomes is derived from court records as described in the text. Pretrial release is defined
as meeting the bail conditions set by the first assigned bail judge. ROR (released on recognizance) is defined as being
released without any conditions. FTA (failure to appear) is defined as failing to appear at a mandated court date.
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Table 2: Observational Release Rate Disparities

(1) (2) (3)
White 0.072 0.068 0.052

(0.005) (0.005) (0.004)
Male -0.092

(0.004)
Age at Arrest -0.005

(0.000)
Prior Rearrest -0.068

(0.004)
Prior FTA -0.208

(0.005)
Felony Charge -0.171

(0.005)
Any Drug Charge -0.057

(0.007)
Any DUI Charge 0.119

(0.004)
Any Violent Charge -0.146

(0.007)
Any Property Charge -0.072

(0.005)
Court x Time FE No Yes Yes
Case/Defendant Observables No No Yes
Mean Release Rate 0.730 0.730 0.730
Cases 595,186 595,186 595,186

Notes. This table reports OLS estimates of regressions of an indicator for pretrial release on defendant characteristics.
The regressions are estimated on the sample described in the notes to Table 1. Robust standard errors, two-way clustered
at the individual and the judge level, are reported in parentheses.
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Table 3: Mean Risk and Unwarranted Disparity Estimates

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.338 0.319 0.346

(0.007) (0.021) (0.014)
Black Defendants 0.400 0.394 0.436

(0.006) (0.021) (0.016)

Panel B: System-Wide Discrimination

Mean Across Cases 0.054 0.054 0.042
(0.002) (0.007) (0.006)

Panel C: Judge-Level Discrimination

Mean Across Judges 0.054 0.054 0.042
(0.003) (0.007) (0.006)

Std. Dev. Across Judges 0.038 0.037 0.037
(0.003) (0.003) (0.003)

Fraction Positive 0.929 0.931 0.873
(0.016) (0.036) (0.036)

Judges 268 268 268
Notes. This table summarizes estimates of mean risk and unwarranted racial disparities from di�erent extrapolations

of the variation in Figure 2. Panel A reports estimates of race-specific average misconduct risk, Panel B reports
estimates of system-wide (case-weighted) unwarranted disparity, and Panel C reports empirical Bayes estimates of
summary statistics for the judge-level unwarranted disparity prior distribution. To estimate mean risk, column 1 uses
a linear extrapolation of the variation in Figure 2, while column 2 uses a quadratic extrapolation and column 3 uses
a local linear extrapolation with a Gaussian kernel and a rule-of-thumb bandwidth. Robust standard errors, two-way
clustered at the individual and judge level, are obtained by a bootstrapping procedure and appear in parentheses.
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Table 4: Unwarranted Disparities and Judge Characteristics

Full-Sample Disparities Split-Sample
Disparities

(1) (2) (3) (4) (5) (6) (7)
New Judge -0.016 -0.012 -0.006

(0.005) (0.004) (0.005)
Lenient Judge -0.009 -0.011 -0.003

(0.004) (0.003) (0.003)
Above-Median Black Share -0.012 -0.007 0.003

(0.004) (0.004) (0.004)
Manhattan Courtroom 0.036 0.033 0.022

(0.005) (0.004) (0.005)
Bronx Courtroom -0.004 -0.007 0.006

(0.004) (0.005) (0.006)
Queens Courtroom 0.028 0.022 0.022

(0.005) (0.006) (0.005)
Richmond Courtroom 0.016 0.010 0.022

(0.004) (0.007) (0.006)
Lagged Disparity 0.556 0.380

(0.062) (0.069)
Mean Disparity 0.042 0.042 0.042 0.042 0.042 0.056 0.056
R2 0.048 0.023 0.041 0.348 0.414 0.251 0.348
Notes. This table reports OLS estimates of regressions of unwarranted disparity posteriors on judge characteristics.

Unwarranted disparities are estimated as described in Section 5, using the benchmark local linear estimate of mean risk.
New judges are defined as judges appointed during our estimation period. Lenient judges are defined as judges with
above-average leniency, controlling for court-by-time fixed e�ects. Courtroom locations are defined using the location
of the modal case heard by each judge. Split-sample disparities are computed by splitting each judge’s sample of
cases at the median case and constructing two samples, a before-median case sample and an after-median case sample.
Unwarranted disparities are then re-estimated within each subsample. The estimation procedure conditions on court-
by-time e�ects, which causes a small number of judge e�ects to become collinear with the court-by-time e�ects and
dropped. All specifications are weighted by the inverse variance of the unwarranted disparity posteriors. Empirical Bayes
posteriors are computed using a standard shrinkage procedure (Morris, 1983). Robust standard errors are reported in
parentheses.
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Table 6: Policy Simulations

Baseline

Target Unwarranted Target Observational
Disparity Posteriors Disparity Posteriors
Increase Decrease Increase Decrease
Leniency Leniency Leniency Leniency

Panel A: Close All Disparities (1) (2) (3) (4) (5)
Mean Unwarranted Disparity 0.047 0.000 0.000 -0.017 -0.019

[0.037] [0.020] [0.026] [0.020] [0.026]
Mean Observational Disparity 0.065 0.017 0.019 0.000 -0.000

[0.038] [0.020] [0.026] [0.019] [0.026]
Racial Bias 0.074 0.039 0.013 0.025 -0.011

[0.078] [0.068] [0.055] [0.070] [0.053]

Panel B: Close Top-Quintile Disparities

Mean Unwarranted Disparity 0.030 0.030 0.026 0.026
[0.035] [0.037] [0.038] [0.041]

Mean Observational Disparity 0.047 0.048 0.044 0.043
[0.035] [0.037] [0.039] [0.040]

Racial Bias 0.062 0.051 0.059 0.045
[0.075] [0.076] [0.076] [0.080]

Observations 268 268 268 268 268
Notes. This table reports the results from a series of policy simulations. Column 1 reports the mean unwarranted

disparity, observational disparity, and racial bias across judges and 250 simulations of the hierarchical MTE model.
Average standard deviations across judges are included in brackets. Simulations are based on the estimates from
columns 2 and 4 of Appendix Table A16. Column 2 of Panel A recomputes the statistics for a counterfactual in which
the lower of the Black or white release rate of each judge is raised to equalize unwarranted disparity posteriors, while
column 3 of Panel A does the same by lowering one of the two release rates. Columns 4 and 5 of Panel A instead
adjust release rates to equalize observational disparity posteriors. Panel B conducts the counterfactual exercises only
on judges ranked in the top quintile of unwarranted (columns 2 and 3) or observational (columns 4 and 5) disparity
posteriors. Estimates of the model hyperparameters and empirical Bayes posteriors of all judge-specific parameters are
recomputed in each simulation draw via the SMD procedure outlined in the text, using moments simulated according
to the estimated distribution of reduced-form estimates in Figure 2.
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A Appendix Figures and Tables

Appendix Figure A1: Placebo Mean Risk Extrapolation
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Notes. This figure plots race-specific release rates for the 268 judges in our sample against rates of predicted pretrial
misconduct among the set of released defendants. Predicted misconduct is given by the fitted values of an OLS regression
of misconduct on the regressors in column 3 of Table 2, estimated in the set of released defendants. Average predicted
misconduct rates in the full sample of white and Black defendants are indicated with solid markers at the maximal
release rate of one. All estimates adjust for court-by-time fixed e�ects. The figure also plots race-specific linear,
quadratic, and local linear curves of best fit, obtained from judge-level regressions that inverse-weight by the variance
of the estimated predicted misconduct rate among released defendants. The local linear regression uses a Gaussian
kernel with a race-specific rule-of-thumb bandwidth. 95 percent confidence intervals for the local linear extrapolations’
intercept estimates at one, obtained from robust standard errors two-way clustered at the individual and judge level,
are indicated with brackets.
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Appendix Figure A2: Sensitivity Analysis
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Notes. This figure shows how our estimate of system-wide discrimination changes under di�erent estimates of white
and Black mean risk. The mean risk estimates obtained from the linear, quadratic, and local linear extrapolations in
Figure 2 are indicated by solid, dashed, and dotted lines.
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Appendix Figure A3: Unwarranted Release Rate Disparities, Model-Based Mean Risk Estimates

Strata-Adjusted Disparity (SE)________________________
 Mean = 0.066 (0.002)
 S.D. = 0.040 (0.003)
 Frac. Positive = 0.959 (0.013)

Unwarranted Disparity (SE)______________________
 Mean = 0.050 (0.002)
 S.D. = 0.037 (0.003)
 Frac. Positive = 0.912 (0.017)
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Notes. This figure plots the distribution of observational and unwarranted release rate disparity posteriors for the
268 judges in our sample. Strata-adjusted disparities are estimated by the coe�cients of an OLS regression of an
indicator for pretrial release on white◊judge fixed e�ects, controlling for judge main e�ects and court-by-time fixed
e�ects. Unwarranted disparities are estimated as described in Section 5, using the hierarchical MTE model estimates of
mean risk for each race. Empirical Bayes posteriors are computed using a standard shrinkage procedure, as described
in Appendix B.4. Means and standard deviations refer to the estimated prior distribution. The fractions of positive
disparities are computed as posterior average e�ects, as described in Appendix B.4
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Appendix Figure A4: Hierarchical MTE Model Fit
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Notes. This figure plots race-specific release rates for the 268 judges in our sample against rates of pretrial misconduct
among the set of released defendants. All estimates adjust for court-by-time fixed e�ects. The figure also plots race-
specific curves of best fit implied by our baseline hierarchical MTE model hyperparameter estimates.
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Appendix Figure A5: Predictiveness of Observational Release Rate Disparities

Forecast Regression________________
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Notes. This figure plots unwarranted white-black release rate disparity posteriors against the corresponding strata-
adjusted release rate disparity posteriors for the 268 judges in our sample. Observational disparities are estimated by
the coe�cients of an OLS regression of an indicator for pretrial release on white◊judge fixed e�ects, controlling for
judge main e�ects and court-by-time fixed e�ects. Unwarranted disparities are estimated as described in Section 5,
using the local linear extrapolation from Figure 2 to estimate the mean risk of each race. Empirical Bayes posteriors
are computed using a standard shrinkage procedure, as described in Appendix B.4. The slope of the solid line indicates
the forecast coe�cient.
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Appendix Table A1: Judge Leniency and Sample Attrition

All White Black
Defendants Defendants Defendants

(1) (2) (3)
Dropped from Sample 0.00007 0.00003 0.00012

(0.00012) (0.00013) (0.00014)
Court x Time FE Yes Yes Yes
Mean Sample Attrition 0.416 0.409 0.424
Cases 1,425,652 726,284 697,597

Notes. This table reports OLS estimates of regressions of judge leniency on an indicator for leaving the sample due
to case adjournment or case disposal and court-by-time fixed e�ects. The regressions are estimated on the sample of
all arraignments made in NYC between November 1, 2008 and November 1, 2013. Judge leniency is estimated using
data from other cases assigned to a given bail judge, following the procedure described in Section 4.1. Robust standard
errors, two-way clustered at the individual and the judge level, are reported in parentheses.
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Appendix Table A2: Descriptive Statistics by Sample

All Defendants White Defendants Black Defendants
Full Estimation Full Estimation Full Estimation

Sample Sample Sample Sample Sample Sample
Panel A: Pretrial Release (1) (2) (3) (4) (5) (6)

Released Before Trial 0.852 0.730 0.872 0.767 0.832 0.695
Share ROR 0.601 0.852 0.616 0.852 0.586 0.851
Share Disposed 0.301 0.000 0.274 0.000 0.327 0.000
Share Adjourned 0.191 0.000 0.199 0.000 0.183 0.000
Share Money Bail 0.068 0.144 0.070 0.144 0.066 0.145
Share Other Bail Type 0.332 0.004 0.314 0.004 0.348 0.004
Share Remanded 0.000 0.000 0.000 0.000 0.000 0.000

Panel B: Defendant Characteristics

White 0.483 0.478 1.000 1.000 0.000 0.000
Male 0.822 0.821 0.831 0.839 0.813 0.804
Age at Arrest 31.819 31.969 31.540 32.055 32.080 31.890
Prior Rearrest 0.192 0.229 0.168 0.204 0.214 0.253
Prior FTA 0.085 0.103 0.071 0.087 0.099 0.117

Panel C: Charge Characteristics

Number of Charges 1.094 1.150 1.111 1.184 1.078 1.118
Felony Charge 0.184 0.362 0.181 0.355 0.188 0.368
Misdemeanor Charge 0.816 0.638 0.819 0.645 0.812 0.632
Any Drug Charge 0.347 0.256 0.342 0.257 0.352 0.256
Any DUI Charge 0.031 0.046 0.046 0.067 0.017 0.027
Any Violent Charge 0.072 0.143 0.062 0.124 0.081 0.160
Any Property Charge 0.217 0.136 0.209 0.127 0.226 0.144

Cases 1,358,278 595,186 656,711 284,598 701,567 310,588
Notes. This table summarizes the di�erence between the NYC analysis sample and the full sample of NYC arraign-

ments. The full sample consists of all bail hearings between November 1, 2008 and November 1, 2013. The analysis
sample consists of bail hearings that were quasi-randomly assigned to judges between November 1, 2008 and November
1, 2013, as described in the text. Information on demographics and criminal outcomes is derived from court records as
described in the text. Pretrial release is defined as meeting the bail conditions set by the first assigned bail judge. ROR
(released on Recognizance) is defined as being released without any conditions. FTA (failure to appear) is defined as
failing to appear at a mandated court date.
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Appendix Table A3: Tests of Quasi-Random Judge Assignment

All White Black
Defendants Defendants Defendants

(1) (2) (3)
White 0.00013

(0.00009)
Male 0.00003 0.00003 0.00004

(0.00014) (0.00019) (0.00018)
Age at Arrest -0.00011 -0.00015 -0.00008

(0.00004) (0.00006) (0.00005)
Prior Rearrest -0.00021 0.00006 -0.00042

(0.00011) (0.00018) (0.00015)
Prior FTA 0.00016 -0.00011 0.00036

(0.00016) (0.00024) (0.00023)
Number of Charges -0.00001 -0.00001 -0.00001

(0.00001) (0.00001) (0.00003)
Felony Charge 0.00025 0.00011 0.00039

(0.00020) (0.00023) (0.00025)
Any Drug Charge -0.00022 -0.00017 -0.00027

(0.00016) (0.00021) (0.00018)
Any DUI Charge 0.00045 0.00051 0.00008

(0.00027) (0.00032) (0.00045)
Any Violent Charge -0.00008 -0.00023 0.00001

(0.00023) (0.00033) (0.00025)
Any Property Charge -0.00033 -0.00028 -0.00036

(0.00018) (0.00019) (0.00027)
Joint p-value [0.10689] [0.29792] [0.10136]
Court x Time FE Yes Yes Yes
Cases 595,186 284,598 310,588

Notes. This table reports OLS estimates of regressions of judge leniency on defendant characteristics. The regressions
are estimated on the sample described in Table 1. Judge leniency is estimated using data from other cases assigned to a
given bail judge, following the procedure described in Section 4.1. All regressions control for court-by-time fixed e�ects.
The p-values reported at the bottom of each column are from F-tests of the joint significance of the variables listed in
the rows. Robust standard errors, two-way clustered at the individual and the judge level, are reported in parentheses.
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Appendix Table A4: First Stage E�ects of Judge Leniency

All White Black
Defendants Defendants Defendants

(1) (2) (3)
Judge Leniency 0.960 0.788 1.104

(0.025) (0.029) (0.033)
Court x Time FE Yes Yes Yes
Mean Release Rate 0.730 0.767 0.695
Cases 595,186 284,598 310,588

Notes. This table reports OLS estimates of regressions of an indicator for pretrial release on judge leniency. The
regressions are estimated on the sample described in Table 1. Judge leniency is estimated using data from other cases
assigned to a bail judge, following the procedure described in Section 4.1. All regressions control for court-by-time fixed
e�ects. Robust standard errors, two-way clustered at the individual and the judge level, are reported in parentheses.
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Appendix Table A5: Simple Numerical Example of Unwarranted Disparity Estimation

Number of Number Scaling Rescaled Release Release
Defendants Released Factor Released Rate Disparity

Panel A: Observational Estimates (1) (2) (3) (4) (5) (6)

Low-Risk Defendants Y ú
i = 0 75 60 1 60 0.65

Y ú
i = 1 25 5 1 5 0.30

High-Risk Defendants Y ú
i = 0 25 20 1 20 0.35

Y ú
i = 1 75 15 1 15

Panel B: Rescaled Estimates

Low-Risk Defendants Y ú
i = 0 75 60 2/3 40 0.50

Y ú
i = 1 25 5 2 10 0.00

High-Risk Defendants Y ú
i = 0 25 20 2 40 0.50

Y ú
i = 1 75 15 2/3 10

Notes: This table uses a simple numerical example to illustrate how unwarranted disparities can be measured with
observational release rate comparisons that are rescaled using average group-specific misconduct risk. We assume there
is one type-neutral judge who releases 80 percent of defendants with Y ú

i
= 0 and 20 percent of defendants with Y ú

i
= 1.

The judge observes the type of the defendant, which is either High-risk or Low-risk. There are 100 High-risk defendants
where 75 have Y ú

i
= 1, and 100 Low-risk defendants where 25 have Y ú

i
= 1. Panel A shows that the judge has a Low-

risk release rate of 0.65 but a High-risk release rate of 0.35, meaning that an observational comparison would find that
Low-risk defendants have a 30 percentage point higher release rate than High-risk defendants despite the judge being
type-neutral. Panel B shows that the true unwarranted disparity of zero can be measured by rescaling this observational
release rate comparison with the scaling factor described in the text. Column 3 of Panel B shows the scaling factor (�i)
in this example, and column 6 shows the resulting unwarranted disparity estimate.
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Appendix Table A6: Mean Risk and Unwarranted Disparity Estimates, Borough-Specific Estimates

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.337 0.342 0.337

(0.014) (0.034) (0.025)
Black Defendants 0.414 0.400 0.419

(0.009) (0.023) (0.021)

Panel B: System-Wide Discrimination

Mean Across Cases 0.050 0.052 0.046
(0.008) (0.020) (0.010)

Panel C: Judge-Level Discrimination

Mean Across Judges 0.043 0.048 0.041
(0.032) (0.072) (0.028)

Std. Dev. Across Judges 0.033 0.040 0.040
(0.032) (0.072) (0.028)

Fraction Positive 0.904 0.883 0.848
(0.025) (0.050) (0.049)

Judges 268 268 268
Notes. This table summarizes estimates of mean risk and unwarranted racial disparities. This tables estimates

conditional regression models for each borough and averages the resulting estimates by borough share. Panel A reports
estimates of race-specific average misconduct risk, Panel B reports estimates of system-wide (case-weighted) unwarranted
disparity, and Panel C reports empirical Bayes estimates of summary statistics for the judge-level unwarranted disparity
prior distribution. To estimate mean risk, column 1 uses a linear extrapolation of the variation in Figure 2, while column
2 uses a quadratic extrapolation and column 3 uses a local linear extrapolation with a Gaussian kernel and a rule-of-
thumb bandwidth. Robust standard errors, two-way clustered at the individual and judge level, are obtained by a
bootstrapping procedure and appear in parentheses.
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Appendix Table A7: Mean Risk and Unwarranted Disparity Estimates, Shrunk Leniency Estimates

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.342 0.368 0.358

(0.008) (0.037) (0.013)
Black Defendants 0.403 0.436 0.441

(0.007) (0.028) (0.015)

Panel B: System-Wide Discrimination

Mean Across Cases 0.054 0.046 0.042
(0.003) (0.014) (0.006)

Panel C: Judge-Level Discrimination

Mean Across Judges 0.053 0.046 0.042
(0.003) (0.014) (0.006)

Std. Dev. Across Judges 0.029 0.029 0.029
(0.002) (0.002) (0.002)

Fraction Positive 0.963 0.938 0.920
(0.011) (0.085) (0.040)

Judges 268 268 268
Notes. This table summarizes estimates of mean risk and unwarranted racial disparities from di�erent extrapolations

of the variation in Figure 2, after applying conventional empirical Bayes shrinkage to the judge- and race-specific leniency
estimates. Panel A reports estimates of race-specific average misconduct risk, Panel B reports estimates of system-wide
(case-weighted) unwarranted disparity, and Panel C reports empirical Bayes estimates of summary statistics for the
judge-level unwarranted disparity prior distribution. To estimate mean risk, column 1 uses a linear extrapolation of
the variation in Figure 2, while column 2 uses a quadratic extrapolation and column 3 uses a local linear extrapolation
with a Gaussian kernel and a rule-of-thumb bandwidth. Robust standard errors, two-way clustered at the individual
and judge level, are obtained by a bootstrapping procedure and appear in parentheses.
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Appendix Table A8: Unwarranted Disparity Estimation for NYC Release Decisions

Number of Number Scaling Rescaled Release Release
Defendants Released Factor Released Rate Disparity

Panel A: Observational Estimates (1) (2) (3) (4) (5) (6)

White Defendants Y ú
i = 0 186,250 159,296 1.000 159,296 0.765

Y ú
i = 1 98,348 58,425 1.000 58,425 0.068

Black Defendants Y ú
i = 0 175,120 145,528 1.000 145,528 0.697

Y ú
i = 1 135,468 70,952 1.000 70,952

Panel B: Rescaled Estimates

White Defendants Y ú
i = 0 186,250 159,296 0.928 147,788 0.753

Y ú
i = 1 98,348 58,425 1.137 66,418 0.042

Black Defendants Y ú
i = 0 175,120 145,528 1.077 156,709 0.710

Y ú
i = 1 135,468 70,952 0.901 63,905

Notes: This table calculates system-wide unwarranted disparity in NYC by rescaling observational release rate
comparisons using estimates of average white and black misconduct risk. In Panel A we use the local linear estimates
of mean risk in Table 3 to estimate the number of defendants with and without misconduct potential (column 1) as
well as the number of such defendants that are released (column 2). In Panle A, column 6 we display the observational
release rate disparity between white and Black defendants. In Panel B we use the same mean risk estimates to rescale
this observational release rate comparison with the scaling factor described in the text. Column 3 of Panel B shows the
scaling factor (�i) given by these estimates, and column 6 shows the resulting unwarranted disparity estimate.
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Appendix Table A9: Mean Risk and Unwarranted Disparity Bounds

From 0.90 From 0.85 From 0.80
Leniency Leniency Leniency

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants [0.277,0.377] [0.248,0.398] [0.221,0.421]

(0.004,0.004) (0.002,0.002) (0.001,0.001)
Black Defendants [0.349,0.449] [0.313,0.463] [0.280,0.480]

(0.006,0.006) (0.003,0.003) (0.002,0.002)

Panel B: System-Wide Discrimination

Mean Across Cases [0.035,0.073] [0.029,0.083] [0.021,0.092]
(0.003,0.002) (0.002,0.002) (0.002,0.001)

Panel C: Judge-Level Discrimination

Mean Across Judges [0.035,0.073] [0.029,0.083] [0.021,0.091]
(0.003,0.002) (0.003,0.002) (0.002,0.002)

Std. Dev. Across Judges [0.037,0.039] [0.037,0.042] [0.036,0.046]
(0.003,0.004) (0.003,0.004) (0.003,0.005)

Fraction Positive [0.821,0.975] [0.770,0.982] [0.694,0.989]
(0.022,0.012) (0.019,0.010) (0.017,0.009)

Judges 268 268 268
Notes. This table summarizes bounds on mean risk and unwarranted racial disparities estimated from the variation

in Figure 2. Panel A reports bounds on race-specific average misconduct risk, Panel B reports bounds on system-wide
(case-weighted) unwarranted disparity, and Panel C reports bounds on empirical Bayes estimates of summary statistics
for the judge-level unwarranted disparity prior distribution. To estimate bounds on mean risk, column 1 uses a local
linear fit of released misconduct rates among judges releasing 90% of white and Black defendants. Columns 2 and 3 form
bounds from judges releasing 85% and 80% of white and Black defendants, respectively. The local linear regressions
use a Gaussian kernel and a rule-of-thumb bandwidth. Bounds are formed under the assumption that either none or
all of the detained defendants in each column have pretrial misconduct potential. Panels B and C search within these
bounds to find the combination of white and Black mean risk that minimize or maximize each unwarranted disparity
statistic. Robust standard errors on the endpoints of each set of bounds, two-way clustered at the individual and judge
level, are obtained by a bootstrapping procedure and appear in parentheses.
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Appendix Table A10: Mean Risk and Unwarranted Disparity Estimates, With Covariate Adjustment

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.351 0.334 0.352

(0.007) (0.021) (0.015)
Black Defendants 0.394 0.412 0.423

(0.006) (0.021) (0.016)

Panel B: System-Wide Discrimination

Mean Across Cases 0.043 0.037 0.035
(0.002) (0.006) (0.005)

Panel C: Judge-Level Discrimination

Mean Across Judges 0.043 0.036 0.035
(0.002) (0.006) (0.005)

Std. Dev. Across Judges 0.031 0.030 0.031
(0.003) (0.003) (0.003)

Fraction Positive 0.923 0.891 0.878
(0.017) (0.042) (0.036)

Judges 268 268 268
Notes. This table summarizes estimates of mean risk and unwarranted racial disparities from di�erent extrapolations

of the variation in Figure 2, where release and misconduct rates adjust for both the court-by-time e�ects and the case
and defendant observables in Table 2. Panel A reports estimates of race-specific average misconduct risk, Panel B
reports estimates of system-wide (case-weighted) unwarranted disparity, and Panel C reports empirical Bayes estimates
of summary statistics for the judge-level unwarranted disparity prior distribution. To estimate mean risk, column 1 uses
a linear extrapolation, while column 2 uses a quadratic extrapolation and column 3 uses a local linear extrapolation
with a Gaussian kernel and a rule-of-thumb bandwidth. Robust standard errors, two-way clustered at the individual
and judge level, are obtained by a bootstrapping procedure and appear in parentheses.
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Appendix Table A11: Mean Risk and Unwarranted Disparity Estimates, Alternative Misconduct
Outcomes

Any Case Any Violent
Misconduct FTA Rearrest Rearrest

Panel A: Mean Risk by Race (1) (2) (3) (4)
White Defendants 0.346 0.176 0.233 0.014

(0.015) (0.011) (0.019) (0.004)
Black Defendants 0.436 0.242 0.314 0.014

(0.016) (0.013) (0.020) (0.005)

Panel B: System-Wide Discrimination

Mean Across Cases 0.042 0.051 0.050 0.068
(0.006) (0.004) (0.005) (0.027)

Panel C: Judge-Level Discrimination

Mean Across Judges 0.042 0.051 0.050 0.068
(0.006) (0.005) (0.005) (0.026)

Std. Dev. Across Judges 0.037 0.039 0.039 0.045
(0.003) (0.003) (0.003) (0.014)

Fraction Positive 0.873 0.913 0.910 0.948
(0.035) (0.024) (0.028) (0.052)

Judges 268 268 268 268
Notes. This table summarizes estimates of mean risk and unwarranted racial disparities for di�erent outcome variables.

Panel A reports estimates of race-specific average misconduct risk, Panel B reports estimates of system-wide (case-
weighted) unwarranted disparity, and Panel C reports empirical Bayes estimates of summary statistics for the judge-level
unwarranted disparity prior distribution. Column 1 adjusts for di�erences by race in the mean risk of any misconduct
(either rearrest or FTA). Column 2 adjusts for di�erences by race in the mean risk of FTA. Column 3 adjusts for
di�erences by race in the mean risk of rearrest. Column 4 adjusts for di�erences by race in the mean risk of rearrest
for a violent crime. Robust standard errors, two-way clustered at the individual and judge level, are obtained by a
bootstrapping procedure and appear in parentheses.
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Appendix Table A12: Mean Risk and Unwarranted Disparity Estimates, Alternative Judge Decisions

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.343 0.341 0.345

(0.007) (0.027) (0.033)
Black Defendants 0.405 0.415 0.447

(0.006) (0.022) (0.038)

Panel B: System-Wide Discrimination

Mean Across Cases 0.045 0.042 0.032
(0.002) (0.007) (0.013)

Panel C: Judge-Level Discrimination

Mean Across Judges 0.044 0.042 0.032
(0.003) (0.007) (0.013)

Std. Dev. Across Judges 0.043 0.043 0.043
(0.004) (0.004) (0.004)

Fraction Positive 0.855 0.838 0.769
(0.018) (0.043) (0.081)

Judges 268 268 268
Notes. This table summarizes estimates of mean risk and unwarranted racial disparities from di�erent extrapolations

of the variation in Figure 2. The judge’s decision variable in this table is release on recognizance (ROR) versus the
assignment of any monetary bail, where there is a 5.8 percentage point disparity in the assignment of ROR between
white and Black defendants after controlling for court-by-time e�ects. Panel A reports estimates of race-specific average
misconduct risk, Panel B reports estimates of system-wide (case-weighted) unwarranted disparity, and Panel C reports
empirical Bayes estimates of summary statistics for the judge-level unwarranted disparity prior distribution. To estimate
mean risk, column 1 uses a linear extrapolation of the variation in Figure 2, while column 2 uses a quadratic extrapolation
and column 3 uses a local linear extrapolation with a Gaussian kernel and a rule-of-thumb bandwidth. Robust standard
errors, two-way clustered at the individual and judge level, are obtained by a bootstrapping procedure and appear in
parentheses.
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Appendix Table A13: Mean Risk and Unwarranted Disparity Estimates, Alternative Race Definition

Linear Quadratic Local Linear
Extrapolation Extrapolation Extrapolation

Panel A: Mean Risk by Race (1) (2) (3)
White Defendants 0.208 0.138 0.187

(0.009) (0.018) (0.014)
Black or Hispanic Defendants 0.393 0.419 0.415

(0.005) (0.019) (0.011)

Panel B: System-Wide Discrimination

Mean Across Cases 0.089 0.213 0.112
(0.007) (0.032) (0.017)

Panel C: Judge-Level Discrimination

Mean Across Judges 0.090 0.211 0.112
(0.008) (0.031) (0.016)

Std. Dev. Across Judges 0.000 0.000 0.000
(0.007) (0.022) (0.016)

Fraction Positive 1.000 1.000 1.000
(0.018) (0.004) (0.015)

Judges 250 250 250
Notes. This table summarizes estimates of mean risk and unwarranted racial disparities from di�erent extrapolations

of the variation in Figure 2. The racial comparison in this table is between Black or Hispanic defendants to non-
Hispanic white defendants, where there is a 8.4 percentage point release rate disparity after adjusting for court-by-time
e�ects. Panel A reports estimates of race-specific average misconduct risk, Panel B reports estimates of system-wide
(case-weighted) unwarranted disparity, and Panel C reports empirical Bayes estimates of summary statistics for the
judge-level unwarranted disparity prior distribution. To estimate mean risk, column 1 uses a linear extrapolation of
the variation in Figure 2, while column 2 uses a quadratic extrapolation and column 3 uses a local linear extrapolation
with a Gaussian kernel and a rule-of-thumb bandwidth. Robust standard errors, two-way clustered at the individual
and judge level, are obtained by a bootstrapping procedure and appear in parentheses.
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Appendix Table A15: Tests of Conventional MTE Monotonicity

Number of Spline Knots
5 10 15 20

Panel A: White Defendants (1) (2) (3) (4)
Test Statistic 303.8 303.5 303.4 303.3
Deg. of Freedom 260 255 250 245
p-value [0.032] [0.020] [0.012] [0.007]

Cases 284,598 284,598 284,598 284,598

Panel B: Black Defendants

Test Statistic 403.8 402.9 402.8 402.3
Deg. of Freedom 260 255 250 245
p-value [<0.001] [<0.001] [<0.001] [<0.001]

Cases 310,588 310,588 310,588 310,588
Notes. This table reports the results of the tests of conventional MTE monotonicity proposed by Frandsen et

al. (2019), computed separately by defendant race. Test statistics are based on quadratic b-spline estimates of the
relationship between misconduct outcomes and judge leniency, with the number of knots specified in each column,
controlling for court-by-time fixed e�ects.
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Appendix Table A16: Hierarchical MTE Model Hyperparameter Estimates

White Defendants Black Defendants
(1) (2) (3) (4) (5) (6)

Mean Misconduct Risk (µ) 0.346 0.391 0.371 0.423 0.441 0.437
(0.008) (0.007) (0.014) (0.009) (0.007) (0.016)

Mean ln(Signal Quality) (–) 0.538 0.316 0.523 -0.038 -0.044 -0.080
(0.128) (0.074) (0.125) (0.146) (0.075) (0.104)

Mean Release Threshold (“) 0.912 1.055 1.144 0.893 1.072 1.089
(0.045) (0.023) (0.080) (0.051) (0.034) (0.079)

Release Threshold Std. Dev. (”) 0.369 0.109 0.149 0.417 0.194 0.203
(0.039) (0.011) (0.037) (0.052) (0.021) (0.049)

ln(Signal Quality) Std. Dev. (Â) 0.140 0.134 0.166 0.151
(0.019) (0.016) (0.014) (0.013)

Regression of ln(Signal Quality) -0.376 -0.007
on Release Threshold (—) (0.153) (0.212)

Judges 268 268 268 268 268 268
Notes. This table reports simulated minimum distance estimates of the MTE model described in the text. 500

simulation draws are used. Columns 3 and 6 estimate the full model with all hyperparameters. Columns 2 and 5
restrict — = 0, while columns 1 and 4 also restrict Â = 0. The baseline model used in the text and summarized in
Table 5 comes from columns 2 and 5 of this table. Robust standard errors, two-way clustered at the individual and
the judge level, are reported in parentheses.

67



Appendix Table A17: Unwarranted Disparities and Judge Characteristics, Model-Based Mean Risk

Full-Sample Disparities Split-Sample
Disparities

(1) (2) (3) (4) (5) (6) (7)
New Judge -0.017 -0.013 -0.004

(0.006) (0.004) (0.005)
Lenient Judge -0.010 -0.012 -0.006

(0.004) (0.003) (0.004)
Above-Median Black Share -0.011 -0.007 0.000

(0.004) (0.005) (0.006)
Manhattan Courtroom 0.036 0.033 0.024

(0.005) (0.004) (0.005)
Bronx Courtroom -0.004 -0.007 -0.002

(0.004) (0.005) (0.007)
Queens Courtroom 0.028 0.022 0.020

(0.005) (0.006) (0.007)
Richmond Courtroom 0.016 0.010 0.020

(0.004) (0.007) (0.008)
Lagged Disparities 0.526 0.335

(0.062) (0.078)
Mean Disparity 0.049 0.049 0.049 0.049 0.049 0.049 0.049
R2 0.052 0.027 0.038 0.342 0.415 0.325 0.420
Judges 268 268 268 268 268 252 252
Notes. This table reports OLS estimates of regressions of unwarranted disparity posteriors on judge characteristics.

Unwarranted disparities are estimated as described in Section 5, using the hierarchical MTE model estimate of mean
risk. New judges are defined as judges appointed during our estimation period. Lenient judges are defined as judges
with above-average leniency, controlling for court-by-time fixed e�ects. Courtroom locations are defined using the
location of the modal case heard by each judge. Split-sample disparities are computed by splitting each judge’s sample
of cases at the median case and constructing two samples, a before-median case sample and an after-median case
sample. Unwarranted disparities are then re-estimated within each subsample. The estimation procedure conditions on
court-by-time e�ects, which causes a small number of judge e�ects to become collinear with the court-by-time e�ects
and dropped. All specifications are weighted by the inverse variance of the unwarranted disparity posteriors. Robust
standard errors are reported in parentheses.
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Appendix Table A18: Marginal Treatment E�ect Estimates of Racial Bias

White Black Di�.Defendants Defendants
Panel A: Conventional MTE Estimates (1) (2) (3)

Marginal Released Outcome 0.492 0.494 -0.003
(0.027) (0.025) (0.030)

Panel B: IV Estimates

Marginal Released Outcome 0.409 0.404 0.005
(0.114) (0.087) (0.153)

Court x Time FE Yes Yes –
Mean Misconduct 0.266 0.332 –
Cases 284,598 310,588 –

Notes. This table reports conventional MTE estimates and IV estimates of racial bias. The IV estimates instrument
for pretrial release using a leave-one-out judge leniency measure. To estimate the MTE results, we first compute
judge-specific release and misconduct rates that adjust for court-by-time fixed e�ects. We then fit a quadratic between
misconduct rates and release rates. The MTE is equal to the derivative of this quadratic function. The regressions
are estimated on the sample as described in the notes to Table 1. Standard errors are two-way clustered at the judge
and defendant level. Standard errors are computed by a bootstrap procedure which resamples at the judge level with
replacement and re-estimates the quadratic function between misconduct rates and release rates within each bootstrap
sample. The standard error is equal to the standard deviation of the bootstrap estimates.
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Appendix Table A19: Unwarranted Disparity Decompositions

Baseline No Racial Equal Signal BothBias Quality
Panel A: Change Black Parameters (1) (2) (3) (4)

Unwarranted Disparity 0.047 -0.042 0.095 0.039
Release Rates (W/B) 0.768 / 0.703 0.768 / 0.795 0.768 / 0.652 0.768 / 0.709

Racial Bias 0.074 0.000 0.074 0.000
Marginal Outcomes (W/B) 0.650 / 0.577 0.650 / 0.650 0.650 / 0.577 0.650 / 0.650

Signal Quality (W/B) 1.386 / 0.970 1.386 / 0.970 1.386 / 1.386 1.386 / 1.386

Panel B: Change White Parameters

Unwarranted Disparity -0.006 0.136 0.062
Release Rates (W/B) 0.716 / 0.703 0.853 / 0.703 0.781 / 0.703

Racial Bias 0.000 0.074 0.000
Marginal Outcomes (W/B) 0.577 / 0.577 0.650 / 0.577 0.577 / 0.577

Signal Quality (W/B) 1.386 / 0.970 0.970 / 0.970 0.970 / 0.970
Judges 268 268 268 268

Notes. Column 1 of this table reports average unwarranted disparity and racial bias across judges and 250 simulations
of the hierarchical MTE model, along with average release rates, marginal released outcomes, and signal quality of Black
and white defendants. Simulations are based on the estimates from columns 2 and 4 of Appendix Table A16. Column
2 recomputes the statistics for a counterfactual in which Black (Panel A) or white (Panel B) release rates are set to
eliminate racial bias, while column 3 adjusts Black (Panel A) or white (Panel B) signal quality to equalize signal quality
across race. Column 4 applies both counterfactuals simultaneously.
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Appendix Table A20: Model Estimates of Alternative Conditional Racial Disparities

White Defendants Black Defendants Di�.
Disparity Conditional on: (1) (2) (3)

Misconduct Potential 0.7591 0.7117 0.0474
(0.0042) (0.0065) (0.0053)

Misconduct Signal 0.7360 0.7386 -0.0027
(0.0064) (0.0083) (0.0112)

Misconduct Posterior 0.7811 0.7103 0.0707
(0.0016) (0.0019) (0.0003)

Judges 268 268 –
Notes. This table reports estimates of average racial disparities in defendant release rates, conditional on di�erent

defendant unobservables. Estimates are given by the baseline hierarchical MTE model estimates and averages are
taken both across judges and draws of the judge-level parameters. The first row conditions on true misconduct
potential Y ú

i
, yielding our unwarranted disparity measure. The second row conditions on the judge misconduct

signal ‹ij , corresponding to the measure of race-blindness discussed in the text. The third row conditions on the
judge misconduct posterior pj(‹ij , Ri) and captures racial bias. Robust standard errors, two-way clustered at the
individual and the judge level, are reported in parentheses.
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Appendix Table A21: Racial Bias and Judge Characteristics

(1) (2) (3) (4) (5) (6) (7)
New Judge -0.021 -0.023 -0.007

(0.009) (0.007) (0.005)
Lenient Judge 0.023 0.017 0.033

(0.007) (0.005) (0.003)
Above-Median Black Share -0.008 -0.013 -0.002

(0.007) (0.008) (0.005)
Manhattan Courtroom 0.052 0.044 -0.006

(0.008) (0.008) (0.006)
Bronx Courtroom -0.016 -0.027 -0.015

(0.007) (0.010) (0.006)
Queens Courtroom 0.038 0.023 -0.007

(0.009) (0.011) (0.008)
Richmond Courtroom 0.037 0.019 -0.010

(0.007) (0.009) (0.014)
Unwarranted Disparities 1.369 1.403

(0.086) (0.085)
Mean Bias 0.072 0.072 0.072 0.072 0.072 0.072 0.072
R2 0.026 0.053 0.007 0.332 0.397 0.646 0.770
Judges 268 268 268 268 268 268 268

Notes. This table reports OLS estimates of regressions of racial bias posteriors on judge characteristics. Posteriors
are obtained from the heirarchical MTE model as described in Section 6. New judges are defined as judges appointed
during our estimation period. Lenient judges are defined as judges with above-average leniency, controlling for court-
by-time fixed e�ects. Courtroom locations are defined using the location of the modal case heard by each judge. All
specifications are weighted by the inverse variance of the racial bias posteriors. Robust standard errors are reported in
parentheses.
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Appendix Table A22: Signal Quality Di�erences and Judge Characteristics

(1) (2) (3) (4) (5) (6) (7)
New Judge -0.092 -0.073 -0.014

(0.029) (0.022) (0.012)
Lenient Judge 0.031 0.016 0.074

(0.020) (0.016) (0.009)
Above-Median Black Share -0.031 -0.029 -0.006

(0.020) (0.024) (0.013)
Manhattan Courtroom 0.172 0.153 -0.001

(0.023) (0.025) (0.016)
Bronx Courtroom -0.042 -0.062 -0.044

(0.022) (0.030) (0.016)
Queens Courtroom 0.120 0.090 -0.018

(0.028) (0.034) (0.021)
Richmond Courtroom 0.117 0.081 -0.050

(0.023) (0.029) (0.037)
Unwarranted Disparities 4.575 4.584

(0.197) (0.215)
Mean Di�erence 0.412 0.412 0.412 0.412 0.412 0.412 0.412
R2 0.055 0.011 0.010 0.338 0.379 0.738 0.812
Judges 268 268 268 268 268 268 268

Notes. This table reports OLS estimates of regressions of di�erences in signal quality on judge characteristics.
Posteriors are obtained from the heirarchical MTE model as described in Section 6. New judges are defined as judges
appointed during our estimation period. Lenient judges are defined as judges with above-average leniency, controlling
for court-by-time fixed e�ects. Courtroom locations are defined using the location of the modal case heard by each
judge. All specifications are weighted by the inverse variance of the signal quality di�erence posteriors. Robust standard
errors are reported in parentheses.
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B Econometric Appendix

B.1 Defining and Measuring Discrimination with Multi-Valued Y ú
i

This appendix first generalizes our definition of racial discrimination and derivation of OVB in obser-
vational comparisons to settings where the decision-maker’s objective is non-binary. We then discuss
how our quasi-experimental framework for measuring racial discrimination extends to this case.

Our initial definition of racial discrimination, �j = E[E[Dij | Y ú
i

, Ri = w] ≠ E[Dij | Y ú
i

, Ri = b]],
remains sensible in the case of non-binary Y ú

i
, provided the support of Y ú

i
is the same in the white

(Ri = w) and Black (Ri = b) subpopulations. Natural generalizations of Equation (2) are given by

�j =
ÿ

yœSupp(Y
ú

i )

1
”y

jw
≠ ”y

jb

2
py (B1)

in the multi-valued Y ú
i

case, where py = Pr(Y ú
i

= y), and:

�j =
⁄

Supp(Y
ú

i )

1
”y

jw
≠ ”y

jb

2
dF (y) (B2)

in the case of continuous Y ú
i

, where F (·) is the cumulative distribution function of Y ú
i

. In both cases,
”y

jr
= E[Dij | Y ú

i
= y, Ri = r] gives conditional release rates for each race r and each y œ Supp(Y ú

i
).

As in Section 3.3, the bias of observational benchmarking regressions relative to these parameters,
when judges are as-good-as-randomly assigned, is given by

›j =
ÿ

yœSupp(Y
ú

i )
”y

jw
pyw ≠

ÿ

yœSupp(Y
ú

i )
”y

jb
pyb ≠

ÿ

yœSupp(Y
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1
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jw
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2
(pywpw + pybpb)
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ÿ

yœSupp(Y
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1
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jw
pb + ”y

jb
pw

2
(pyw ≠ pyb) (B3)

in the multi-valued Y ú
i

case, where pyr = Pr(Y ú
i

= y | Ri = r) and again pr = Pr(Ri = r), and:

›j =
⁄

Supp(Y
ú

i )
”y

jw
dFw(y) ≠

⁄

Supp(Y
ú

i )
”y

jb
dFb(y) ≠
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Supp(Y
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1
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jw
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2
d(Fw(y)pw + Fb(y)pb)

=
⁄

Supp(Y
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1
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jw
pb + ”y
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pw

2
d(Fw(y) ≠ Fb(y)) (B4)

in the case of continuous Y ú
i

, where Fr(·) is the cumulative distribution function of Y ú
i

given Ri = r.
As in Section 5, discrimination is identified by the distribution of misconduct outcomes Y ú

i
within

each race when judges are quasi-randomly assigned. By Bayes’ law:

”y

jr
= Pr(Y ú

i
= y | Dij = 1, Ri = r) E[Dij | Ri = r]

Pr(Y ú
i

= y | Ri = r) (B5)

for multi-valued Y ú
i

and similarly for continuous Y ú
i

. The first two terms, Pr(Y ú
i

= y | Dij = 1, Ri = r)
and E[Dij | Ri = r], are identified by Pr(Yi = y | Di = 1, Zij = 1, Ri = r) and E[Di | Zij = 1, Ri = r]
under quasi-random judge assignment as before. In the continuous Y ú

i
case, the first term is given

by the conditional density of Y ú
i

given Di = 1, Zij = 1, and Ri = r. Estimates of the race-specific
misconduct distribution corresponding to the third Pr(Y ú

i
= y | Ri = r) term (which might be
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obtained from similar extrapolations of quasi-experimental data as in the binary Y ú
i

case) thus yield a
plug-in estimator of each ”y

jr
, which can be combined to estimate �j according to the initial definitions.

B.2 Discrimination and Bias with Normally Distributed Signal Noise

This appendix derives the decision-making model discussed in Section 2. A judge observes noisy risk
signals ‹i = Y ú

i
+ ÷i with normally distributed noise: ÷i | Y ú

i
, Ri ≥ N(0, 1/·2

Ri
). The judge has

potentially incorrect beliefs µ̃r on race-specific average misconduct risk µr = E[Y ú
i

| Ri = r] and
knows the potentially race-specific quality of risk signals ·r.

The judge’s subjective posterior of misconduct risk, given a signal of ‹i = v for a defendant of race
Ri = r, is derived from Bayes’ rule:

p(‹; r) =
ÊPr(‹i = v | Y ú

i
= 1, Ri = r)ÊPr(Y ú

i
= 1, Ri = r)

ÊPr(‹i = v, Ri = r)

= „(·r(v ≠ 1))·rµ̃r

„(·r(v ≠ 1))·rµ̃r + „(·rv)·r(1 ≠ µ̃r) (B6)

where ÊPr(·) denotes subjective probabilities and „(x) Ã exp(≠x2/2) is the standard normal density.
Simplifying, we have:

p(‹; r) =
3

1 + exp(·2
r

(1 ≠ 2v)/2)1 ≠ µ̃r

µ̃r

4≠1
(B7)

This specifies a risk-neutral judge’s release rule, Di = 1[fiRi Ø p(‹i; Ri)].
Equation (B7) shows that risk posteriors are strictly increasing in v, such that they can be inverted

to write the judge’s release decision as a cuto� rule for her observed signals ‹i:

Di = 1
5

1
2 ≠ ln

3
µ̃Ri(1 ≠ fiRi)
fiRi(1 ≠ µ̃Ri)

4
/·2

Ri
Ø ‹i

6
(B8)

Equation (B8) shows that variation in risk beliefs µ̃r and risk tolerances fir are observationally equiv-
alent in this model, in the sense that as one of these parameters varies in (0, 1) the other can be set
to keep the index Ir = µ̃r(1≠fir)

fir(1≠µ̃r) , and thus the decision rule, constant.
A consequence of Equation (B8) is that the average misconduct rate of white and Black defendants

at the margin of release, E[Y ú
i

| p(‹i; Ri) = fir, Ri = r], is a function of the judges risk tolerance fir

and prior risk belief µ̃r. By Equation (4), the marginal outcomes under correct beliefs µr equals the
judge’s risk tolerance. More generally:

E[Y ú
i

| p(‹i; Ri) = fir, Ri = r] =
3

1 + Ir

3
1 ≠ µr

µr

44≠1
(B9)

by the observational equivalence of Equation (B8). Racial bias is found when this expression varies
by race r, which could be due to racial animus (fiw ”= fib) or inaccurate beliefs (µ̃r ”= µr).

To characterize discrimination in this model, note that Equation (B8) and the conditional normal-
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ity of ‹i implies that the judge’s true and false negative rates can be written, respectively:

”T

r
= Pr(Di = 1 | Y ú

i
= 0, Ri = r) = �

3
1
2·r ≠ 1

·r

ln Ir

4
(B10)

”F

r
= Pr(Di = 1 | Y ú

i
= 1, Ri = r) = 1 ≠ �

3
1
2·r + 1

·r

ln Ir

4
(B11)

and the extent of racial discrimination is given by the extent to which � = (”T

w
≠”T

b
)(1≠µ̄)+(”F

w
≠”F

b
)µ̄

varies by race, for µ̄ = E[Y ú
i

]. With common signal quality, ·w = ·b, a lack of racial discrimination
requires Iw = Ib. By comparison with Equation (B9), this scenario will generally lead to racial bias
unless white and Black average misconduct risk are also equal (µw = µb). More generally, the fact
that � is strictly decreasing (to zero) in the white index Iw and strictly increasing (to one) in the
Black index Ib implies that there exist a set of thresholds (Iw, Ib) resulting in no racial discrimination
on average, even when signal quality di�ers. Again, this will typically yield racial bias, per Equation
(B9), to the extent either mean risk or signal quality di�ers by race.

B.3 Bail Release and Classification Error

This appendix shows how a judge minimizing the cost of type-I and type-II error in the bail setting
implicitly uses a posterior risk threshold-crossing rule, as in Section 2. Suppose the cost of a type-I
“false positive” decision (detaining an individual with no pretrial misconduct risk) is given by cI > 0
and the cost of a type-II “false negative” decision (releasing an individual with pretrial misconduct
risk) is given by cII > 0. A judge’s utility given a release decision Di œ {0, 1} is then:

Ui = ≠cIIDiY
ú

i
≠ cI(1 ≠ Di)(1 ≠ Y ú

i
) (B12)

Let D(v) be a decision rule mapping risk signals ‹i to binary release decisions Di. Suppose D(v) is
set to maximize the judge’s expected utility (or minimize her expected disutility):

D(v) = arg min
d(v)

cIId(v)p(v) + cI(1 ≠ d(v))(1 ≠ p(v)) (B13)

where p(‹) denotes the judge’s subjective expectation of pretrial misconduct given a signal of ‹i = ‹.
It is clear that this solution is a cuto� rule:

D(v) = 1[fi Ø p(‹ij)] (B14)

where fi = c
II

cI +cII œ (0, 1) gives the judge’s relative cost of type-II error. Per Equation (4), this also
shows that when judge beliefs are accurate, the expected outcome of a marginally released defendant
identifies this relative cost parameter.

B.4 Conventional Empirical Bayes Methods

This appendix summarizes the two conventional empirical Bayes approaches used in this paper: the
posterior mean calculation of Morris (1983) and the posterior average e�ect calculation of Bonhomme
and Weidner (2020). We use the former to plot the distribution of disparity posteriors in Figures 1, 3,
and A3, and also to compute the prior means and standard deviations in these exhibits. We use the
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latter to compute the fraction of judges with positive disparities in these figures, and also to interpret
the coe�cient estimates in Tables 4, A17, A21, and A22.

Let ◊̂j be an estimate of an unknown judge-specific parameter ◊j , such as an observational bench-
marking coe�cient or our rescaled unwarranted disparity measure. Applying to the usual asymptotic
approximation, we write ◊̂j = ◊j + Áj where Áj ≥ N(0, �j) for known �j . Conventional empirical
Bayes methods further assume ◊j ≥ N(µ, �), where µ and � are unknown hyperparameters. Given
this prior distribution, the posterior mean of ◊j after observing the estimate ◊̂j is given by

E[◊j | ◊̂j ] = �j

� + �j

µ + �
� + �j

◊̂j (B15)

More generally, Equation (B15) gives the minimum mean-squared error prediction of ◊j given ◊̂j when
the normality of ◊j is relaxed, provided µ and � continue to parameterize the mean and variance of
the prior distribution.

Empirical Bayes posteriors estimate µ and � and plug these hyperparameter estimates into Equa-
tion (B15). We estimate µ and � by the weighted iterative procedure studied by (Morris, 1983), which
is equivalent to a maximum likelihood procedure. At iteration k the hyperparameter estimates are:

µ̂k =
ÿ

j

Êjkq
jÕ ÊjÕk

◊̂j (B16)

�̂k =
ÿ

j

Êjkq
jÕ ÊjÕk

1
(◊̂j ≠ µ̂k)2 ≠ �j

2
(B17)

with inverse-variance weights that are proportional to Êjk = (�̂k≠1 + �j)≠1 and where Êj0 = 1. We
iterate this procedure to convergence.

Bonhomme and Weidner (2020) discuss posterior average e�ect estimators of the cumulative dis-
tribution function for ◊j , given by

F̂◊(t) = 1
J

ÿ

j

E[1[◊j Æ t] | ◊̂j ] (B18)

for each t in the support of ◊j . Note that 1≠ F̂◊(0) is a posterior average e�ect estimate of the fraction
of ◊j in the population that is positive. Under the normality assumption:

E[1[◊j Æ t] | ◊̂j ] = �

Q

a≠E[◊̂j | ◊̂j ]Ò
��j

�+�j

R

b (B19)

which can, as with Equation (B15), be estimated by plugging in the estimates of the mean and
variance hyperparameters. Just as with the empirical Bayes posterior estimator, Bonhomme and
Weidner (2020) show that this posterior average e�ect estimator has certain robustness properties: it
is optimal in terms of local worst-case bias, and its global bias is bounded by the minimum worst-case
bias within a large class of estimators. They further show how regressions of the empirical Bayes
posterior means on judge characteristics also have a posterior average e�ect interpretation and thus
the same robustness properties for estimating conditional mean functions.
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B.5 Bounding Mean Risk and Racial Discrimination

This appendix details the construction of mean risk and unwarranted disparity bounds in Appendix
Table A9. As in the baseline analysis, this procedure uses estimates of race- and judge-specific
release rates fljr = E[Dij | Ri = r] and released misconduct rates ⁄jr = E[Y ú

i
| Dij = 1, Ri = r].

Instead of extrapolating the latter estimates to estimate the mean risk parameters µjr, and the
corresponding estimates of discrimination �j , here we bound the range of logically possible µjr given
typical misconduct rates of highly lenient judges and search within these ranges to bound statistics
of the prior distribution of discrimination.

Each column of Appendix Table A9 forms bounds from a di�erent leniency threshold fl œ {0.8, 0.85, 0.9}.
For each race r, we first use a local linear regression of the estimated ⁄jr on the estimated fljr to
estimate the average ⁄jr for judges with fljr = fl, parameters we denote by ⁄r. By definition, each ⁄r

bounds the mean risk of race r as

µr œ [⁄rfl, ⁄rfl + (1 ≠ fl)]. (B20)

The lower bound ⁄rfl is obtained from assuming all detained defendants for a judge with a leniency of fl

have Y ú
i

= 0 while the upper bound is obtaind from assuming the (1≠fl) share of detained defendants
have pretrial misconduct potential (Y ú

i
= 1). Panel A of Appendix Table A9 reports estimates of

these bounds for each race, along with their associated standard errors in parentheses. Note that by
construction the width of each interval is equal to 1 ≠ fl.

To obtain bounds on the statistics in Panels B and C of Appendix Table A9, we perform grid
searches within the mean risk bounds in Panel A. For example, to bound the system-wide level of
discrimination we search within the mean risk bounds to find the (µw, µb) pair that minimizes and
maximizes the case-weighted average of judge-specific unwarranted disparity �j . We report these
bounds and their associated standard errors in parentheses. Note that the width of each statistic’s
interval is weakly increasing in 1 ≠ fl, reflecting the increase in the range of mean risk parameters.

B.6 Conventional Monotonicity Violations and Judge Signal Quality

This appendix shows how di�erences in the way judges consider defendant and case characteristics,
which lead to violations of conventional MTE monotonicity, can be viewed as di�erences in judge
signal quality within models like the one we develop in Section 3.2. In doing so we show that such
models are without observational loss, provided judge release decisions are better-than-random.

Consider a setting with a binary potential misconduct outcome Y ú
i

and a set of binary judge release
decisions Dij . The distribution of these random variables is fully specified by the mean risk µ = E[Y ú

i
]

and the true and false negative rates ”T

j
= E[Dij | Y ú

i
= 0] and ”F

j
= E[Dij | Y ú

i
= 0]. With mean

risk fixed, any restriction on judicial decision-making – such as conventional MTE monotonicity or
alternative parameterizations – can thus be understood as restricting the set of (”T

j
, ”F

j
).

We first show that when judges are making better-than-random release decisions, in the sense of
0 < ”T

j
< ”F

j
< 1 for each j, it is without observational loss to assume a decision-making model of

Dij = 1[Ÿj Ø Y ú
i

+ ÷i/·j ], with ÷i | Y ú
i

following a known continuous distribution and ·j > 0. This
follows since then ·j = G≠1

÷
(”T

j
)≠G≠1

÷
(”F

1j
) > 0 and Ÿj = G≠1

÷
(”T

j
)/·j rationalize each (”T

j
, ”F

j
), where
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G÷(·) specifies the cumulative distribution of ÷i | Y ú
i

:

E[Dij | Y ú
i

= y] = Pr(Ÿj Ø y + ÷i/·j)

= G÷((Ÿj ≠ y)·j)

= G÷(G≠1
÷

(”T

j
)) + y(G≠1

÷
(”F

j
) ≠ G≠1

÷
(”T

j
))

= ”T

j
+ y(”F

j
≠ ”T

j
) (B21)

In particular, Equation (B21) shows that our risk signal threshold decision rule (23), in which ÷i |
Y ú

i
≥ N(0, 1), is without loss in this case. In general, we may think of ·j as capturing judge j’s signal

quality: how less likely she is to release defendants with Y ú
i

= 1 than those with Y ú
i

= 0.
We next relate di�erences in such signal quality to conventional monotonicity violations in a simple

behavioral model of judicial decision-making. Suppose judges observe a vector of defendant and case
characteristics Xú

i
which are, without loss, mean zero and positively correlated with misconduct

potential: µX(1) © E[Xú
i

| Y ú
i

= 1] > E[Xú
i

| Y ú
i

= 0] © µX(0). Judges place di�erent weights —j on
the elements of this vector and also vary in their overall leniency fij , such that:

Dij = 1[fij Ø XúÕ
i

—j + Ui] (B22)

where we assume Ui | Xú
i
, Y ú

i
is uniformly distributed. In this model E[Dij | Y ú

i
= y] = fij ≠µX(y)Õ—j ,

assuming the parameters are such that these are all between zero and one.
Conventional monotonicity in this model requires Pr(Dij Ø Dik = 1) or Pr(Dik Ø Dij = 1) for

each (j, k), which generally restricts the weights —j to be the same across judges. If some elements of Xú
i

were observed to the econometrician, one could relax this assumption by a conditional analysis within
sets of defendants with identical observables (e.g., Mueller-Smith, 2015). Conditional monotonicity
would then generally constrain the weights corresponding to unobserved characteristics to be constant.

Judicial decision-making is here better-than-random when ”T

j
≠ ”F

j
= (µX(1) ≠ µX(0))Õ—j > 0 or

when the weights in each —j are non-negative with at least one element strictly positive. In this case
we have from the above result an equivalent representation of:

Dij = 1[Ÿj Ø Y ú
i

+ Vi/·j ] (B23)

where Vi | Y ú
i

≥ U(0, 1). Here judge signal quality is given by ·j = (µX(1) ≠ µX(0))Õ—j and has
an straightforward interpretation: with only one element in Xú

i
, for example, di�erences in ·j are

proportional to di�erences in the behavioral weights —j . More generally, this discussion shows how
parameterizations of the distribution of signal quality across judges can be thought to structure
di�erences in how judges weigh defendant and case characteristics when making release decisions.

B.7 SMD Estimation of the Hierarchical MTE Model

We estimate the hierarchical model described in Section 6.1 and Appendix B.2 by a simulated minimum
distance (SMD) procedure that targets moments of the distribution of race- and judge-specific release
rates fljr = E[Dij | Ri = r] and released misconduct rates ⁄jr = E[Y ú

i
| Dij = 1, Ri = r], estimated

from quasi-experimental judge assignments. This appendix formally specifies this procedure.
We first obtain estimates of fljr and ⁄jr from OLS regressions of pretrial release Di and pretrial
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misconduct Yi on judge-by-race interactions, adjusting for the quasi-experimental court-by-time ef-
fects) and defendant and case observables as discussed in Section 5.2. Subject to the usual asymptotic
approximation, the resulting estimates fl̂jr and ⁄̂jr can be modeled as noisy measures of the true
parameters, with a known distribution of sampling error. Specifically:

fl̂jr = fljr + Áfl

jr
(B24)

⁄̂jr = ⁄jr + Á⁄

jr
(B25)

where Á | fl, ⁄ ≥ N(0, �) for a variance-covariance matrix � that is given by conventional asymptotics.
Let X = ((fl̂jr, ⁄̂jr)j=1,...,268,rœ{w,b}) collect these estimates across the 268 judges in our sample and
both races w and b.

The model in Appendix B.2 specifies fljr and ⁄jr as functions of mean misconduct risk µr, judge
signal quality ·jr, and risk thresholds fijr:

fljr = �((f(fijr, µr, ·jr) ≠ 1)·jr))µr + �(f(fijr, µr, ·jr)·jr))(1 ≠ µr) (B26)

⁄jr = �((f(fijr, µr, ·jr) ≠ 1)·jr))µr/fljr (B27)

where �(·) denotes the standard normal cumulative distribution function and f(·) is as defined in
Section B.2. We further model signal thresholds Ÿjr = f(fijr, µr, ·jr) and log signal quality ln ·jr

as being joint-normally distributed across judges, with reisdual correlation across races. That is, we
specify:

ln ·jr = –r + —rŸjr + ‘jr (B28)

for each race r, with (Ÿjw, Ÿjb)Õ ≥ N(µŸ, �Ÿ) and (‘jw, ‘jb)Õ | Ÿ ≥ N(0, �· ).
Equations (B24)–(B28) specify a complete distribution for the observed quasi-experimental esti-

mates X in terms of a hyperparameter vector � = (µw, µb, –w, –b, —w, —b, µÕ
Ÿ
, vec(�1/2

Ÿ )Õ, vec(�1/2
·̃

)Õ)Õ.
In practice, there is no simple closed form expression for this likelihood, complicating maximum like-
lihood estimation. Instead, we estimate � by SMD, targeting moments of X as motivated by the
discussion in Section 6.1. Specifically, let M̂ be a vector with the first two race-specific elements of:

M̂1r =
268ÿ

j=1
Êfl

jr
fl̂jr (B29)

M̂2r =
268ÿ

j=1
Êfl

jr
(fl̂jr ≠ M̂1r)2 (B30)

the next three race-specific elements corresponding to coe�cient estimates from the Ê⁄

jr
-weighted

quadratic OLS regression of:

⁄̂jr = M̂3r + M̂4rfl̂jr + M̂5rfl̂2
jr

+ ‚̂jr (B31)
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and the sixth race-specific element corresponding to the Ê⁄

jr
-weighted residual variance estimate:

M̂6r =
268ÿ

j=1
Ê⁄

jr
‚̂2

jr
(B32)

The weights are derived from the estimation error matrix �: Êfl

jr
is proportional to the inverse variance

of fl̂jr ≠ fljr while Ê⁄

jr
is proportional to the inverse variance of ⁄̂jr ≠ ⁄jr, with both weights rescaled

to sum to one in the population of judges. We further include in M̂ the
Ò

Êfl

jw
Êfl

jb
-weighted covariance

of fl̂jw and fl̂jw as well as the
Ò

Ê⁄

jw
Ê⁄

jb
-weighted covariance of ⁄̂jw and ⁄̂jw. Together this gives 14

elements in M̂ , the same number of hyperparameters in �.
To estimate � we use an SMD procedure that matches the empirical moments in M̂ with the cor-

responding model-implied moments averaged across 500 simulated draws of the above data-generating
process. That is, we estimate:

�̂ = arg min
�

14ÿ

m=1

A
M̂m ≠ 1

500

500ÿ

s=1
Mms(�)

B2

(B33)

where the functions Mms(·) of candidate hyperparameters � are given by applying the previous
moment calculations to data generated from 500 fixed simulation draws s. Conventional asymptotic
theory for �̂ applies under appropriate regularity conditions (e.g., Pakes and Pollard, 1989).

Columns 3 and 6 of Appendix Table A16 report SMD estimates and standard errors for the full
model. As discussed in the main text, our baseline model estimates set —r = 0. Per the intuition in
Section 6.1 and to keep the model just-identified, we correspondingly drop the quadratic term from
the moment regression in Equation (B31). The resulting estimates are reported in columns 2 and 5
of Appendix Table A16. To impose conventional MTE monotonicity, we further set the variance of
·jr to zero. The resulting estimates are reported in columns 1 and 4 of Appendix Table A16.

Lastly, given �̂, we compute maximum a posteriori probability estimates (also known as posterior
modes) of the judge-specific parameters ◊j = (Ÿjw, ln ·jw, Ÿjb, ln ·jb)Õ, following an approach similar
to that which Angrist et al. (2017) apply for a similar hierarchical model. Note that the log-likelihood
of ◊ = (◊Õ

1 . . . , ◊Õ
268)Õ and quasi-experimental estimates X can be written:

L(◊, X ) = ln „m

!
X ≠ X̄(◊); �

"
+ ln „m (◊ ≠ µ◊; �◊) (B34)

where „m(·; V ) gives the density of a mean-zero multivariate normal vector with variance-covariance
matrix V ; X̄(·) collects the formulas from Equations (B26) and (B27), for fljr and ⁄jr in terms of µw,
µb, and ◊; and both µ◊ and �◊ are derived from the –r and —r, µŸ, �Ÿ, and �· . Our estimates of ◊

are given by maximizing this likelihood, plugging in our baseline hyperparameter estimates �̂.
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