Calculus Example Exam Solutions

1. Limits (18 points, 6 each)
Evaluate the following limits:
-2
(a) lim Y2 =2
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We compute as follows:
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From basic principles of exponentials, we know that this limit is 0.

2. Definition of the Derivative (16 points, 10/6)
Let f(z) = 23 + 2.

(a) Use the definition of the derivative to compute f/'(—1).
We compute from the definition, using the expected algebraic factorization in the fourth line:
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(b) Write the equation of the line that is tangent to y = f(z) at © = —1.

When z = —1, we see that f(—1) = (—1)3 + (=1) = —2, so the corresponding point on the curve
is (=1, —2). The slope of the line tangent to the curve at that point is given by the derivative,
namely f/'(—1) = 4. Thus, we use Point-Slope Form of a line to find the equation of the tangent
line as y — (—2) = 4(x — (—1)), which can be simplified to become y = 4z + 2.

3. Differentiation (24 points, 8 each)

Differentiate the following functions. You may use any theorems.

1
(a) h(z)= iz
We re-write the function as h(z) = (1 —4z)~/? and then use the Power Rule and the Chain Rule
to get:
W(z) = —3(1—42)73/%. (-4)
B 2
" T

(b) j(a) = (1—a?)-e "
We use the Product Rule, the Power Rule, and the Chain Rule to get:

) = (1—a2) e (=2z)+ (-2z) - e
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= [(1-2?) 4 1) (-20) e
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= (2-a2%)(-2x)e "

(c) k(z) = (52% + Inzh)*/?
We use the Power Rule, Chain Rule, and Rules for Logarithms to get:

4 43
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4. Optimization I (20 points)

Find all global and local maxima and minima of the function f(z) = 10 — |2? + 2z — 24| on
the interval [-10, 10].

The function f is continuous, and the domain [—10,10] is a closed interval, so a theorem tells us that
f will have a global maximum and a global minimum. It is also possible for f to have some local
max/mim. Since the absolute value of anything is greater than or equal to zero, we see by inspection
that f cannot take on a value greater than 10, but it is not clear that it achieves this maximum value
on this interval.

We factor the expression inside the absolute value to get: f(z) =10 — |(z + 6)(x — 4)].

This is very helpful, because it means that when —6 < x < 4, the expression inside the absolute value
is negative, and otherwise, the expression is positive. Hence we may re-write the function piecewise:

—22—-2x+34 |, if-10<2<—6
flx) = > +2r—14 |, f-6<x<4
—2?2 -2 +34 , ifd<x<10

This enables us to use our usual rules of differentiation to find f’ and optimize f.

—2xr—2 , if-10<x<—6
f(z) = 20+2 , if-6<z<4
—2xr—-2 , ifd<ax<10

Note that f is not differentiable at x = —6 or at x = 4. Nor is it differentiable at the endpoints of the
interval, namely x = —10 and z = 10.

Maxima and minima occur at only at critical points which come in three varieties: 1. Stationary Points
where f’(z) = 0, II. Singular Points where f’ does not exist, and III. Endpoints. For our function, we
have five such points: I. z = —1, II. z = —6 and x = 4, and III. x = —10 and x = 10.

To find the global maxima and minima, we simply compare the values of the function at the critical
points, and our theorem mentioned above guarantees that the max/min among these will be the global
max/min. We compute: f(—10) = —46, f(—6) = 10, f(-1) = —15, f(4) = 10, and f(10) = —86.
Clearly, the smallest of these values is —86, so our global minimum occurs at = 10. The largest of

these values is 10, so our global maximum occurs twice, at * = —6 and again at x — 4.
All global max/min are also local max/min, but there may be other local max/min. In fact, at z = —10,
we have a local min, by the First Derivative Test, and at x = —1, we have another local min, by either

the First or Second Derivative Test.

5. Logarithms and Exponentials (20 points, 5/10/5)

Let L(a) =k - e~2(-0) . g=3(2-0)* for positive constants k, ¢;, and cs.

(a) Let I(a) = In(L(a)). Use the laws of logarithms to write /(a) without any exponential
functions.

l(a) = In(L(a))
= Inlk- e—3(c1—a)? | e*%(sza)Q]
— Ink+lIne 3(@—a)? 4y e-3s(c2—a)?

= Ink—(c1 —a)? — 3(c2 — a)?



(b)

(c)

dl
Compute —.

da
Using the expression from part (a) and applying the Power and Chain Rules, we find:
dl
Za =(c1—a)+ (c2—a)

Find all values of ¢ at which j—l =0.
a

Setting % =0 in part (b) and solving for a, we find a = <5<,

6. Analysis of Functions (30 points, 3 each except 6 for part (i))

Consider the function f: R — R given by the formula:
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(c)
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(f)

(g)

X

f@) =23t

Compute f'(x).
By the Quotient Rule, we get:
(x24+1)-1—z-(2z) 1—a?

FO=""0 1 "y

Identify all critical points of f.

Since f is defined on all of R, we have no endpoints. Since f’ is defined on all of R, we have no
singular points. Stationary points occur where f/ = 0, and the only way a fraction can be zero is
when its numerator is, so we find the only critical points to be x = +1.

Identify all intervals on which f is increasing and decreasing.

By theorems about derivatives, if f/ > 0 on an interval, then f is increasing on that interval, and
if f/ <0, then f is decreasing. Since the denominator of f’ is always positive, it suffices to check
the sign of the numerator. On the intervals (—oo, —1) and (+1, +00), we see that f’ < 0, and so
f is decreasing. On the interval (—1,41), we see that f’ > 0, and so f is increasing.

Identify all local maxima and minima of f.

Local maxima and minima may only occur at critical points. By the First Derivative Test, we see
that since f is decreasing on (—oo, —1) and increasing on (—1,+1), the point £ = —1 corresponds
to a local minimum. Again by the First Derivative Test, we see that since f is increasing on
(—=1,41) and decreasing on (+1,+00), the point & = +1 corresponds to a local maximum.
Compute f(z).

By the Quotient Rule and Chain Rule, we get:

(2 4+1)? - (=22) — (1 —2?) - 2(2* + 1)(2z) _ 223 — 6z 2x(2? — 3)
(22 + 1) T (@113 (@2t 1)

f(x) =

Identify all possible inflection points of f.

The possible inflection points of f occur where f” is either 0 or undefined. In our case, f” is
always defined, and it is zero only when z = 0 or x = £+/3.

Identify all intervals on which f is concave up and concave down.

On the interval (—oo, —/3), we see that f” < 0, so f is concave down on that interval.

On the interval (—+/3,0), we see that f” > 0, so f is concave up on that interval.

On the interval (0, ++/3), we see that f” < 0, so f is concave down on that interval.

On the interval (++/3,400), we see that f” > 0, so f is concave up on that interval.



(h) Identify any inflection points of f.
Since the concavity of f changes on each pair of consecutive intervals, all of the possible inflection
points (z = —v/3, = 0, and & = ++/3) are actually inflection points.

(i) Make an accurate graph of y = f(z) on an appropriately scaled set of axes. Make
sure the graph illustrates all of the indicated behavior.

Sorry, cannot easily include graphics in this document. Try Mathematica or a graphing calculator.

7. Partial Derivatives (20 points, 4/6/6/4)
Consider the function f:S — R given by the formula:
flz,y) = —zy +2Inz + 2.

(a) Identify the natural domain of f as a subset S C R2.

Since the natural logarithm is only defined on positive real numbers, the natural domain of the
function fis S = {(z,y) € R? | = > 0}.

(b) Compute % o )
o= Vg
(c) Compute %
% =—x+2y

(d) Find all points (z,y) € S at which Vf(x,y) = (0,0).
The gradient of the function is the vector of partial derivatives. If Vf(x,y) = (0,0), then we

0 0 0
interpret this to mean that or =0 and or =0.If or =0, then —x+2y =0, so x = 2y (*). But
ox dy dy
0] 2
if a—f =0 as well, then —y+ — =0, so y = % Substituting our expression from equation (*),
x x
we get y = =, which simplifies to 4> = 1, which leads to y = £1. Substituting these two values

2y?
back into equation (*) yields & = +2, respectively. Hence there are two points in R? where the
algebraic expressions for both partial derivatives are zero, namely (2,1) and (—2,—1). But only
the former is in the natural domain S.

8. Optimization II (20 points)
Let f(z,y) = az? + Bry for some constants a,3 > 0. Consider the following three con-
straints:
(1) 2>0,(2) y>0, and (3) z+4y =5.

Optimize the function f subject to the constraints.

As this is a function of several variables that we wish to optimize subject to constraints, we use the
technique of Lagrange multipliers. The constraint function is g(x,y) = x + 4y, and the constraint itself
is then a level curve of this function, namely g = 5, as given in (3) above. The gradient of the function
fis Vf = (2az + By, fzx). The gradient of the constraint function g is Vg = (1,4). By the Lagrange
multipliers theorem, the function f will be optimized subject to the constraint ¢ = 5 when there is

some constant (the Lagrange multiplier) A € R such that Vf = AVg. This leads to the vector equation
(2ax + By, Bx) = A(1,4). This vector equation should be read as two separate equations:

20 + By = A

Bx =4\



These are two equations in the three variables z, y, and A. (Note that o and 8 are pre-determined
constants.) To solve this system, we need a third equation, which we have in the form of the constraint
g = 5, which should be written in its original form as:

r+4y=5
Combining the first two equations by substituting the value of A from the first into the second yields:
B = 4(2az + By)

Or:
(B —8a)z = 4Py

Taking = = 5 — 4y from the constraint equation and substituting it into this last equation yields:

(8 —8a)(5 — 4y) = 4Py

—4
This can then be simplified and solved to get y = u.
86 — 32«
. . . . 2053
Plugging this back in to get the other variable, we also find x = W
— 32«

2058 58 — 40«
88 — 32a’ 83 — 32«
neither. The only other places where f may attain its max or min are at the endpoints of the constraint
set, given by (1), (2), and (3) combined, namely, at the two points (5,0) and (0, 2). It is clear from
the definition of f that f(0, g) = 0, which must be a minimum since f takes only non-negative values
when z,y > 0. At the other end, f(5,0) = 25«a. We compare this to our newly discover point, where

f < 208 58— 40a>  —400a82 +1008%  B%(1008 — 400c) 2532

83 — 320’ 83 — 32ax (88—320)2  (88—32a)2  16(B—4a)

Finally, we must decide whether this point ( ) is a maximum, a minimum, or

Whether this is a maximum or a minimum depends on the values of a and 3.

. Definite Integrals (10 points)

2
Find the value of the constant § such that / (2% + Bx) do = 4.
1

We compute the definite integral on the left-hand side as follows:
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If this is equal to 4, we get 4 = % + %, which can be solved to get 8 = %.
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