
Calculus Example Exam Solutions

1. Limits (18 points, 6 each)

Evaluate the following limits:

(a) lim
x!4

p
x� 2

x� 4
We compute as follows:

lim
x!4

p
x� 2

x� 4
= lim

x!4

p
x� 2

x� 4
·
p
x+ 2p
x+ 2

= lim
x!4

x� 4

(x� 4)(
p
x+ 2)

= lim
x!4

1p
x+ 2

=
1p
4 + 2

=
1

4

(b) lim
x! 1

2

2x2 + x� 1

2x� 1

We compute as follows:

lim
x! 1

2

2x2 + x� 1

2x� 1
= lim

x! 1
2

(2x� 1)(x+ 1)

2x� 1

= lim
x! 1

2

x+ 1

=
3

2

(c) lim
x!+1

e

�x

From basic principles of exponentials, we know that this limit is 0.

2. Definition of the Derivative (16 points, 10/6)

Let f(x) = x

3 + x.

(a) Use the definition of the derivative to compute f

0(�1).

We compute from the definition, using the expected algebraic factorization in the fourth line:



f

0(�1) = lim
x!�1

f(x)� f(�1)

x� (�1)

= lim
x!�1

(x3 + x)� (�2)

x+ 1

= lim
x!�1

x

3 + x+ 2

x+ 1

= lim
x!�1

(x+ 1)(x2 � x+ 2)

x+ 1

= lim
x!�1

x

2 � x+ 2

= 4

(b) Write the equation of the line that is tangent to y = f(x) at x = �1.

When x = �1, we see that f(�1) = (�1)3 + (�1) = �2, so the corresponding point on the curve
is (�1,�2). The slope of the line tangent to the curve at that point is given by the derivative,
namely f

0(�1) = 4. Thus, we use Point-Slope Form of a line to find the equation of the tangent
line as y � (�2) = 4(x� (�1)), which can be simplified to become y = 4x+ 2.

3. Di↵erentiation (24 points, 8 each)

Di↵erentiate the following functions. You may use any theorems.

(a) h(x) =
1p

1� 4x

We re-write the function as h(x) = (1�4x)�1/2 and then use the Power Rule and the Chain Rule
to get:

h

0(x) = � 1
2 (1� 4x)�3/2 · (�4)

=
2

(1� 4x)3/2

(b) j(x) = (1� x

2) · e�x

2

We use the Product Rule, the Power Rule, and the Chain Rule to get:

j

0(x) = (1� x

2) · e�x

2 · (�2x) + (�2x) · e�x

2

= [(1� x

2) + 1] · (�2x) · e�x

2

= (2� x

2)(�2x) e�x

2

(c) k(x) = (5x2 + lnx4)4/3

We use the Power Rule, Chain Rule, and Rules for Logarithms to get:

k

0(x) =
4

3
(5x2 + lnx4)1/3 ·

✓
10x+

4x3

x

4

◆

=
4

3
(5x2 + lnx4)1/3 ·

✓
10x+

4

x

◆



4. Optimization I (20 points)

Find all global and local maxima and minima of the function f(x) = 10� |x2 + 2x� 24| on
the interval [�10, 10].

The function f is continuous, and the domain [�10, 10] is a closed interval, so a theorem tells us that
f will have a global maximum and a global minimum. It is also possible for f to have some local
max/mim. Since the absolute value of anything is greater than or equal to zero, we see by inspection
that f cannot take on a value greater than 10, but it is not clear that it achieves this maximum value
on this interval.

We factor the expression inside the absolute value to get: f(x) = 10� |(x+ 6)(x� 4)|.
This is very helpful, because it means that when �6  x  4, the expression inside the absolute value
is negative, and otherwise, the expression is positive. Hence we may re-write the function piecewise:

f(x) =

8
<

:

�x

2 � 2x+ 34 , if �10  x < �6
x

2 + 2x� 14 , if �6  x  4
�x

2 � 2x+ 34 , if 4 < x  10

This enables us to use our usual rules of di↵erentiation to find f

0 and optimize f .

f

0(x) =

8
<

:

�2x� 2 , if �10 < x < �6
2x+ 2 , if �6 < x < 4

�2x� 2 , if 4 < x < 10

Note that f is not di↵erentiable at x = �6 or at x = 4. Nor is it di↵erentiable at the endpoints of the
interval, namely x = �10 and x = 10.

Maxima and minima occur at only at critical points which come in three varieties: I. Stationary Points
where f

0(x) = 0, II. Singular Points where f

0 does not exist, and III. Endpoints. For our function, we
have five such points: I. x = �1, II. x = �6 and x = 4, and III. x = �10 and x = 10.

To find the global maxima and minima, we simply compare the values of the function at the critical
points, and our theorem mentioned above guarantees that the max/min among these will be the global
max/min. We compute: f(�10) = �46, f(�6) = 10, f(�1) = �15, f(4) = 10, and f(10) = �86.
Clearly, the smallest of these values is �86, so our global minimum occurs at x = 10. The largest of
these values is 10, so our global maximum occurs twice, at x = �6 and again at x� 4.

All global max/min are also local max/min, but there may be other local max/min. In fact, at x = �10,
we have a local min, by the First Derivative Test, and at x = �1, we have another local min, by either
the First or Second Derivative Test.

5. Logarithms and Exponentials (20 points, 5/10/5)

Let L(a) = k · e� 1
2 (c1�a)2 · e� 1

2 (c2�a)2 for positive constants k, c1, and c2.

(a) Let l(a) = ln(L(a)). Use the laws of logarithms to write l(a) without any exponential
functions.

l(a) = ln(L(a))

= ln[k · e� 1
2 (c1�a)2 · e� 1

2 (c2�a)2 ]

= ln k + ln e�
1
2 (c1�a)2 + ln e�

1
2 (c2�a)2

= ln k � 1
2 (c1 � a)2 � 1

2 (c2 � a)2



(b) Compute
dl

da

.

Using the expression from part (a) and applying the Power and Chain Rules, we find:

dl

da

= (c1 � a) + (c2 � a)

(c) Find all values of a at which
dl

da

= 0.

Setting dl

da

= 0 in part (b) and solving for a, we find a = c1+c2
2 .

6. Analysis of Functions (30 points, 3 each except 6 for part (i))

Consider the function f : R ! R given by the formula:

f(x) =
x

x

2 + 1
.

(a) Compute f

0(x).

By the Quotient Rule, we get:

f

0(x) =
(x2 + 1) · 1� x · (2x)

(x2 + 1)2
=

1� x

2

(x2 + 1)2

(b) Identify all critical points of f .

Since f is defined on all of R, we have no endpoints. Since f

0 is defined on all of R, we have no
singular points. Stationary points occur where f

0 = 0, and the only way a fraction can be zero is
when its numerator is, so we find the only critical points to be x = ±1.

(c) Identify all intervals on which f is increasing and decreasing.

By theorems about derivatives, if f 0
> 0 on an interval, then f is increasing on that interval, and

if f 0
< 0, then f is decreasing. Since the denominator of f 0 is always positive, it su�ces to check

the sign of the numerator. On the intervals (�1,�1) and (+1,+1), we see that f 0
< 0, and so

f is decreasing. On the interval (�1,+1), we see that f 0
> 0, and so f is increasing.

(d) Identify all local maxima and minima of f .

Local maxima and minima may only occur at critical points. By the First Derivative Test, we see
that since f is decreasing on (�1,�1) and increasing on (�1,+1), the point x = �1 corresponds
to a local minimum. Again by the First Derivative Test, we see that since f is increasing on
(�1,+1) and decreasing on (+1,+1), the point x = +1 corresponds to a local maximum.

(e) Compute f

00(x).

By the Quotient Rule and Chain Rule, we get:

f

00(x) =
(x2 + 1)2 · (�2x)� (1� x

2) · 2(x2 + 1)(2x)

(x2 + 1)4
=

2x3 � 6x

(x2 + 1)3
=

2x(x2 � 3)

(x2 + 1)3

(f) Identify all possible inflection points of f .

The possible inflection points of f occur where f

00 is either 0 or undefined. In our case, f 00 is
always defined, and it is zero only when x = 0 or x = ±

p
3.

(g) Identify all intervals on which f is concave up and concave down.

On the interval (�1,�
p
3), we see that f 00

< 0, so f is concave down on that interval.

On the interval (�
p
3, 0), we see that f 00

> 0, so f is concave up on that interval.

On the interval (0,+
p
3), we see that f 00

< 0, so f is concave down on that interval.

On the interval (+
p
3,+1), we see that f 00

> 0, so f is concave up on that interval.



(h) Identify any inflection points of f .

Since the concavity of f changes on each pair of consecutive intervals, all of the possible inflection
points (x = �

p
3, x = 0, and x = +

p
3) are actually inflection points.

(i) Make an accurate graph of y = f(x) on an appropriately scaled set of axes. Make
sure the graph illustrates all of the indicated behavior.

Sorry, cannot easily include graphics in this document. Try Mathematica or a graphing calculator.

7. Partial Derivatives (20 points, 4/6/6/4)

Consider the function f : S ! R given by the formula:

f(x, y) = �xy + 2 lnx+ y

2
.

(a) Identify the natural domain of f as a subset S ⇢ R2.

Since the natural logarithm is only defined on positive real numbers, the natural domain of the
function f is S = {(x, y) 2 R2 | x > 0}.

(b) Compute
@f

@x

.

@f

@x

= �y +
2

x

(c) Compute
@f

@y

.

@f

@y

= �x+ 2y

(d) Find all points (x, y) 2 S at which rf(x, y) = (0, 0).

The gradient of the function is the vector of partial derivatives. If rf(x, y) = (0, 0), then we

interpret this to mean that
@f

@x

= 0 and
@f

@y

= 0. If
@f

@y

= 0, then �x+2y = 0, so x = 2y (*). But

if
@f

@x

= 0 as well, then �y +
2

x

= 0, so y = 2
x

. Substituting our expression from equation (*),

we get y = 2
2y , which simplifies to y

2 = 1, which leads to y = ±1. Substituting these two values

back into equation (*) yields x = ±2, respectively. Hence there are two points in R2 where the
algebraic expressions for both partial derivatives are zero, namely (2, 1) and (�2,�1). But only
the former is in the natural domain S.

8. Optimization II (20 points)

Let f(x, y) = ↵x

2 + �xy for some constants ↵,� > 0. Consider the following three con-
straints:

(1) x � 0, (2) y � 0, and (3) x+ 4y = 5.

Optimize the function f subject to the constraints.

As this is a function of several variables that we wish to optimize subject to constraints, we use the
technique of Lagrange multipliers. The constraint function is g(x, y) = x+4y, and the constraint itself
is then a level curve of this function, namely g = 5, as given in (3) above. The gradient of the function
f is rf = (2↵x+ �y,�x). The gradient of the constraint function g is rg = (1, 4). By the Lagrange
multipliers theorem, the function f will be optimized subject to the constraint g = 5 when there is
some constant (the Lagrange multiplier) � 2 R such that rf = �rg. This leads to the vector equation
(2↵x+ �y,�x) = �(1, 4). This vector equation should be read as two separate equations:

2↵x+ �y = �

�x = 4�



These are two equations in the three variables x, y, and �. (Note that ↵ and � are pre-determined
constants.) To solve this system, we need a third equation, which we have in the form of the constraint
g = 5, which should be written in its original form as:

x+ 4y = 5

Combining the first two equations by substituting the value of � from the first into the second yields:

�x = 4(2↵x+ �y)

Or:
(� � 8↵)x = 4�y

Taking x = 5� 4y from the constraint equation and substituting it into this last equation yields:

(� � 8↵)(5� 4y) = 4�y

This can then be simplified and solved to get y =
5� � 40↵

8� � 32↵
.

Plugging this back in to get the other variable, we also find x =
20�

8� � 32↵
.

Finally, we must decide whether this point

✓
20�

8� � 32↵
,

5� � 40↵

8� � 32↵

◆
is a maximum, a minimum, or

neither. The only other places where f may attain its max or min are at the endpoints of the constraint
set, given by (1), (2), and (3) combined, namely, at the two points (5, 0) and (0, 5

4 ). It is clear from
the definition of f that f(0, 5

4 ) = 0, which must be a minimum since f takes only non-negative values
when x, y � 0. At the other end, f(5, 0) = 25↵. We compare this to our newly discover point, where

f

✓
20�

8� � 32↵
,

5� � 40↵

8� � 32↵

◆
=

�400↵�2 + 100�3

(8� � 32↵)2
=

�

2(100� � 400↵)

(8� � 32↵)2
=

25�2

16(� � 4↵)
.

Whether this is a maximum or a minimum depends on the values of ↵ and �.

9. Definite Integrals (10 points)

Find the value of the constant � such that

Z 2

1
(x2 + �x) dx = 4.

We compute the definite integral on the left-hand side as follows:

R 2
1 (x2 + �x) dx =

h
1
3x

3 + �

2x
2
i
x=2

x=1

= [ 83 + 2�]� [ 13 + �

2 ]

= 7
3 + 3�

2

If this is equal to 4, we get 4 = 7
3 + 3�

2 , which can be solved to get � = 10
9 .
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