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Abstract

Social distancing is critical to slow the spread of COVID-19. However, social distanc-
ing in the wake of COVID-19 has been frustratingly slow and inadequate. Here we
use a game theoretic model to show that, when a new and rare virus, like COVID-19,
emerges, the aggregate level of social distancing has inherent inertia, and that clear
national public statements are essential in reducing that inertia and adjusting the
public’s behavior to the new, optimal level of social distancing. Novel infectious dis-
eases abruptly change the appropriate level of social distancing, leaving individuals
uncertain about how to act. Inertia arises in such a setting because individuals care
about conforming to social norms (e.g., it is awkward to refuse a social invitation
or work request) and the previous level of social distancing provides a focal point to
coordinate behavior. Clear and consistent national statements about the new optimal
level of social distancing enable individuals and communities to coordinate on new
norms of behavior, reducing inertia and moving the society closer to the optimum.
Such national statements generate a beneficial over-reaction from the public that off-
sets the over-weighting of past experience. National communications are preferable
to communications through local governments or employers when the optimal levels
of social distancing are highly correlated over-time and when individuals are poorly-
informed about changes in the optimal level of social distancing. Our results show
the utility of game theoretic models in disease control and public health policy.
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Motivated by the COVID-19 outbreak, we study a model of social distancing in which
people care about two things: (1) engaging in the correct amount of social distancing and (2)
conforming to the behavior of other people (i.e., adhering to social norms). When citizens
care about these two considerations, and are uncertain about each others’ beliefs about the
right amount of social distancing, aggregate social distancing exhibits significant inertia.
In particular, following a large positive shock to the right amount of social distancing
(e.g., because of the outbreak of a contagious virus), aggregate social distancing will be far
below the social optimum, even if individuals’ information accurately reflects this shock on
average.

Can the government improve this situation? The cause of inertia is that people over-
weight their common knowledge about the past level of social distancing because doing so
allows them to coordinate on a similar level of social distancing (i.e., follow social norms)—
e.g., it is awkward for both parties when one refuses to shake the other’s hand. Public
statements from prominent leaders (e.g., presidential speeches) about the new optimal
level of social distancing reduce the inertia by allowing people to coordinate their actions
around new, more appropriate norms.

Given the over-weighting of public messages, we ask, contrary to standard intuitions,
whether leaders should communicate more privately—e.g., via local governments or employers—
rather than publicly. The over-weighting of highly public, national messages is beneficial
when it off-sets counterproductive inertia. National communication is therefore peferable
to local communication when optimal social distancing are highly correlated over-time and
when individuals are poorly-informed about changes in optimal social distancing. Our
results demonstrate how leaders can improve social distancing outcomes through a com-
munications strategy that balances competing

We also ask whether such public statements are the best way to provide information
that moves people toward the right level of social distancing. Given the over-weighting of
public messages, would it be better for leaders to communicate more privately—e.g., via
local governments or employers—rather than publicly. The over-weighting of highly public,
national messages is beneficial when it off-sets counterproductive inertia. National com-
munication is therefore peferable to local communication when optimal social distancing
are highly correlated over-time and when individuals are poorly-informed about changes in
optimal social distancing.

What sort of decisions might our model represent in the context of the COVID-19 crisis?
The key features of the model are that: (1) people are uncertain of the right level of social
distancing and are uncertain of what others believe, (2) the right level of social distancing
exhibits serial correlation, and (3) there is a desire for conformity—the less other people
are social distancing, the less I want to socially distance in order to conform to norms.

One important kind of application concerns social gatherings. The advent of COVID-
19 made it undesirable, from the perspective of social welfare, for people to participate
in events such as St. Patrick’s Day celebrations, spring break trips and parties, and the

1



like. But people were uncertain how serious a threat COVID-19 really was. And, to the
extent that they believed others might think the threat relatively minimal and therefore
continue to gather, they too had incentives to behave this way. The result was undesirable
inertia—people continued past practices in ways that were harmful to the social welfare.

Similar arguments hold for social practices such as hand shaking, kissing, and other
forms of physical social greetings. It is awkward to refuse to shake an offered hand—as
was evident in a recent presidential press briefing—creating a force for social conformity of
the sort we model. The uncertainty about others’ views on COVID-19 created unfortunate
inertia in physical social greetings.

The model also applies, at least in some professional settings, to the choice to continue
going to the office in the shadow of the COVID-19 threat. If employees believe that coming
in signals commitment or ambition, this creates social pressure for employees to continue
coming to work if their managers or supervisors are. In the face of such pressure, the model
suggests, there will be inertia that keeps people coming into the office at inefficiently high
levels, especially during the early days of a viral outbreak.1

1 Model

We build on the canonical framework and results discussed in Angeletos and Lian (2016).2

There is a continuum of citizens indexed by i ∈ [0, 1], interacting over time, indexed by
t = 0, 1, . . .. In each period t, each citizen must take an action ait ∈ R, which captures
the degree of social distancing. A higher action corresponds to a higher level of social
distancing. Absent concerns for conformity, the right action for each citizen is θt. But,
in each period, each citizen cares about targeting this right action and about conforming
to the average action that others take in that period, At =

∫
ait di. This generates a

complementarity: if a citizen believes that others will do little social distancing, this raises
that citizen’s incentive also to do less social distancing. This captures, among other things,
social pressure and the cost of deviating from the norms of behavior in the society. In
particular, a citizen’s payoff in period t is:

−(1− α)(ait − θt)2 − α(ait − At)2, (1)

where α ∈ (0, 1) is the citizens’ relative weight on conformity.

The right action, θt, follows a random walk: θt = θt−1 + ut, where ut ∼ iidN(0, σu).
Citizens do not observe θt, but each citizen observes a signal of the right action: xit = θt+εit,
where εit ∼ iidN(0, σε). Throughout, we assume that the noise and fundamentals are
independent from each other in the standard manner.

1In this setting, there could also be congestion externalities that we leave unmodeled—as fewer people
start going into the office, the risk of being infected in the office goes down.

2This literature builds on the seminal work of Morris and Shin (2002).
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Citizen i observes xit in period t, and θt−1 becomes public in period t.3 Citizens discount
future payoffs by δ, and each citizen maximizes the expected sum of discounted period
payoffs.

2 Analysis

We will think of the normative goal as each individual choosing the right level of aggregate
social distancing, ait = θt, so that the aggregate level of social distancing is also right,
At =

∫
aitdi = θt. This would be the objective of a policy maker who aggregates individual

payoffs, but puts no weight on social conformity (i.e., sets α = 0).4 In light of this, we say
that any reduction in the expected quadratic distance between individual actions and the
right action, E[

∫
(ait − θt)2di], is a normative improvement.

Our first result concerns the optimal level of social distancing under this normative crite-
rion. Because the right action is uncertain, the normatively optimal individual actions—i.e.,
the actions that minimize E[

∫
(ait − θt)2di]—involve citizens choosing their best estimate

of the right action, ait = E[θt|xit, θt−1] = βxit + (1− β)θt−1, where β = σ2
u

σ2
u+σ

2
ε
.

Proposition 1 (Normative Benchmark) If citizens did not care about conformity (α =

0), the aggregate action would be: At = θt + βut, where β = σ2
u

σ2
u+σ

2
ε
.

We now analyze how citizens actually behave, given their concern for taking the right
action and for social conformity. Because there is a continuum of citizens, a citizen’s action
does not affect the aggregate outcome, either in the current or in future periods. Thus, the
only link between periods is information. From equation (1), citizen i chooses the following
degree of social distancing:

ait = (1− α)Eit[θt] + α Eit[At], (2)

where Eit[·] is the expectation of i in period t given his information.

Define Ēh recursively as follows. Ē0[X] = X, Ē1[X] = Ē[Ē0[X]] =
∫
Ei[X]di, Ēh[X] =

Ē[Ēh−1[X]] =
∫
Ei[Ēh−1[X]]di. That is, Ē1[X] is the average expectation of the random

variable X in the population; Ē2[X] is the average expectation in the population about
the average expectation in the population, and so on. Proposition 2 shows that the ag-
gregate social distancing in the population depends on all such higher order expectations
in the population. The proof comes from iterating on equation (2). (All proofs are in the
appendix.)

3Even if θt−1 is not observed in the current period, citizens will infer it in equilibrium if they observe
the last period’s aggregate behavior At−1.

4For our normative standard to coincide with the utilitarian social welfare, one can add a term α
∫

(ajt−
At)

2dj to citizen payoffs in equation (1), so that citizens want the divergence of their own behavior from
the average behavior to be close to the average divergence in the population.
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Proposition 2 (Higher Order Beliefs in Aggregate Action) The aggregate action
in each period depends on all average higher order beliefs in the population about the right
action, with lower weights on higher orders:

At =
∞∑
h=1

(1− α) αh−1 Ēht [θt] (3)

Observe that

Eit[θt] = Eit[ut] + θt−1 ⇒ Ēht [θt] = Ēht [ut] + θt−1. (4)

Now, using properties of Normal distribution and Proposition 2 yields:

Proposition 3 (Aggregate Actions Exhibit Excess Inertia) Conformity generates
inertia. In particular,

• At = θt−1 + φut, where 0 < φ < β < 1, φ = (1−α)β
1−αβ , and β = σ2

u

σ2
u+σ

2
ε
.

• φ is decreasing in α, with limα→0 φ(α) = β and limα→1 φ(α) = 0.

Because citizens care about coordinating their actions, they put extra weight on their
common knowledge of the right action in the past, which facilitates coordination—reminiscent
of the logic of focal points. Citizens have common knowledge that, on average, the right
action today is the right action yesterday (i.e., θt ∼ N(θt−1, σu)) and hence over-weight this
fact. As a result, today’s aggregate action is biased in the direction of yesterday’s right
action. As a consequence, following a large positive shock, like COVID-19, to the right
amount of social distancing, the aggregate action will be lower than the right action.5

Now, suppose in each period t, in addition to the their private signals xit, citizens also
receive a public signal pt = θt + ηt, with ηt ∼ iidN(0, ση). Such a public signal might be
the result, for instance, of information conveyed by the government. Proposition 2 and
equation (4) still hold because they do not depend on the details of available information.
However, the presence of public signals changes the degree of inertia in aggregate social
distancing.

Proposition 4 (Public Announcements)

1. Public signals reduce inertia. Averaging over the public signal noise, the expected
aggregate social distancing is: E[At|θt−1, ut] = θt−1 + φput, where φp > φ.

5The over-weighting of public information is a key insight of Morris and Shin (2002) who showed that
public announcements can be damaging to welfare, particularly, in financial settings.

4



2. The amount of inertia is decreasing in the clarity of the public signal. That is, φp is
monotone decreasing in ση, limση→∞ φp(ση) = φ, and limση→0 φp(ση) = 1.

3. Improving the clarity of the public signal causes a normative improvement (i.e.,
E[
∫

(ait − θt)2di] is increasing in ση) if: (i) α ≤ 1/2 or (ii) ση is sufficiently small.

Proposition 4 shows that, following a shock, an informed leader can send a public signal
that helps set public expectations about the aggregate right action, thereby reducing inertia
in social distancing driven by the desire to conform. The clearer that message (i.e., the
lower ση), the more this will reduce inertia.

Such public messages are a normative improvement if people don’t put too much weight
on conformity (α ≤ 1/2) or the public signal is sufficiently informative (ση small). Why
these conditions? Because citizens value conformity, they put excessive weight on all pub-
lic signals relative to a Bayesian individual who only cares about choosing an action that
reflects the best estimate of θt (this was the same logic that drove inertia in the first place).
Because this distortion is smaller when α is smaller, new public information about the
optimal social distancing is always beneficial when citizens put relatively less weight on
conformity (α ≤ 1/2). In the other extreme, when citizens almost only care about confor-
mity (α ≈ 1), they put almost no weight on their private signals. Now, although citizens
over-weight new public information (pt), this over-reaction to the new public information
helps counter-act their over-reaction to past experience (that θt ∼ (θt−1, σ

2
u)), and the over-

all effect is again beneficial. In between, when α ∈ (1/2, 1), these effects compete and the
overall effect of raising the precision of new public information may be negative unless it
is sufficiently informative (ση small) to offset the over-reaction.6

For social distancing in the presence of a dangerous infectious disease, we believe the
relevant parameter space is α ≤ 1/2. It is unlikely that people care so much about confor-
mity that over-reaction to new public information trumps its value. Hence, for cases like
COVID-19, Proposition 4 suggests that clear and consistent public messages from a leader
are socially beneficial.

Given the overreaction by citizens to public messages described above, one may wonder
whether there is a better way for the government to deliver information. Would it be better
for citizens to receive the same level of information, but privately rather than publicly?
For instance, perhaps employers or local governments could provide private information
to citizens, rather than them all observing the same public information in a presidential
speech or press conference.

To consider this possibility, contrast the public signal case with a setting where, instead
of receiving private and public signals xit ∼ N(θt, σ

2
ε ) and pt ∼ N(θt, σ

2
η), citizens receive

a single private signal x′it with the same amount of information about the right action θt

6Equation (16) in the proof of Proposition 4 shows the necessary and sufficient conditions for when
reducing ση is a normative improvement.
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as the public and private signals combined. In particular, let x′it = θt + ε′it, with ε′it ∼
N(0, σ2

ε′ =
σ2
εσ

2
η

σ2
ε+σ

2
η
).

Proposition 5 The setting with the combination of private and public signals (xit, pt) is
a normative improvement over the setting with more precise private signals x′it when σu is
sufficiently small or σε is sufficiently large.

When citizens believe the past is highly informative about the present (σu small) or that
they are privately poorly-informed (σε large), citizens put too much weight on their past
experience. In such circumstances, it is better for the government to communicate publicly
rather than privately. Citizens over-react to the government’s public messages. But that
will help to counter-act their over-reaction to their past experience. By contrast, when
citizens believe the past is relatively uninformative (σu large) or that they are privately
well-informed (σε small), the government should communicate privately.

In the context of social distancing in the wake of a new and rare infectious disease,
individuals’ information is typically very noisy (σε is large) and the appropriate level of
social distancing is very sticky (σu is low, the disease is a very unusual shock). As such,
for social distancing in the wake of COVID-19, clear and consistent public statements by a
national leader are more effective than statements by local governments or employers, not
because the national government is more informed, but because clear national statements
generate over-reaction that is beneficial to correct the inertia created by the over-weighting
of past habits and social norms.
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4 Appendix: Proofs

Proof of Proposition 2: From equation (2),

At =

∫
aitdi =

∫
((1− α)Eit[θt] + α Eit[At])di = (1− α)Ēt[θt] + α Ēt[At].
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Iterating yields:

At = (1− α)Ēt[θt] + (1− α)α Ē2
t [θt] + α2Ē2

t [At].

Repeated iteration yields the result. �

Proof of Proposition 3: We calculate Ēht [θt], and use Proposition 2. Note that xit =

θt + εit = θt−1 + ut + εit. Thus, letting β = σ2
u

σ2
u+σ

2
ε

Eit[ut] = β(xit − θt−1) = β(ut + εit) ⇒ Ēt[ut] = βut.

Iterating yields:
Ēht [ut] = βh ut. (5)

Substituting from equation (5) into equation (4) yields:

Ēht [θt] = βh ut + θt−1. (6)

Now, substituting from equation (6) into equation (3) in Proposition 2 yields:

At =
∞∑
h=1

(1− α) αh−1 (βh ut + θt−1) = θt−1 +
β(1− α)

1− αβ
ut. (7)

In equation (7), let φ = (1−α)β
1−αβ , and observe that limσε→0 β = limσu→∞ β = 1. �

Proof of Proposition 4: Part 1. With the public signal pt, Eit[ut] = E[ut|xit, pt]. Thus,

Eit[ut] =
σ2
uσ

2
η(xit − θt−1) + σ2

uσ
2
ε (pt − θt−1)

σ2
uσ

2
η + σ2

uσ
2
ε + σ2

εσ
2
η

=
σ2
uσ

2
η(ut + εit) + σ2

uσ
2
ε (pt − θt−1)

σ2
uσ

2
η + σ2

uσ
2
ε + σ2

εσ
2
η

. (8)

Thus,

Ēt[ut] =
σ2
uσ

2
ηut + σ2

uσ
2
ε (pt − θt−1)

σ2
uσ

2
η + σ2

uσ
2
ε + σ2

εσ
2
η

= Au ut + Ap (pt − θt−1), (9)

where

Au =
σ2
uσ

2
η

σ2
uσ

2
η + σ2

uσ
2
ε + σ2

εσ
2
η

and Ap =
σ2
uσ

2
ε

σ2
uσ

2
η + σ2

uσ
2
ε + σ2

εσ
2
η

, (10)

with
lim
ση→∞

Ap = 0, lim
ση→∞

Au = β, lim
ση→0

Ap = 1, and lim
ση→0

Au = 0. (11)

Iterating on equation (9) yields

Ēht [ut] = (Au)
h ut + (1 + · · ·+ Ah−1u )Ap(pt − θt−1). (12)
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Substituting from equation (12) into equation (4) yields:

Ēht [θt] = (Au)
h ut + (1 + · · ·+ Ah−1u )Ap(pt − θt−1) + θt−1

= (Au)
h ut +

1− Ahu
1− Au

Ap(pt − θt−1) + θt−1. (13)

Now, substituting from equation (13) into equation (3) in Proposition 2 yields:

At =
∞∑
h=1

(1− α) αh−1
(

(Au)
h ut +

1− Ahu
1− Au

Ap(pt − θt−1) + θt−1

)
= θt−1 +

(1− α)Au
1− αAu

ut + (1− α)
Ap

1− Au

(
1

1− α
− Au

1− αAu

)
(pt − θt−1)

= θt−1 +
(1− α)Au
1− αAu

ut +
Ap

1− αAu
(pt − θt−1)

= θt−1 +
(1− α)Auut + Ap(pt − θt−1)

1− αAu
. (14)

Note that, using (11), if ση →∞, equation (14) simplifies to equation (7).

For given θt−1 and ut, aggregate action At takes different values for different values of
the public signal pt, depending on the idiosyncratic error term ηt in the public signal. The
average public signal, for given θt−1 and ut, is E[pt|ut] = θt−1 + ut. Then, averaging over
the public signal noise, equation (14) becomes:

E[At|ut, θt−1] = θt−1 + φput, where φp =
(1− α)Au + Ap

1− αAu
.

Part 2. From (11), limση→0 φp = 1 and limση→∞ φp = φ. Comparing with φ in Proposi-
tion 3 yields:

φp − φ =
(1− α)Au + Ap

1− αAu
− (1− α)β

1− αβ
=

σ4
εσ

2
u

(σ2
ε + (1− α)σ2

u)(σ
2
εσ

2
u + σ2

η(σ
2
ε + (1− α)σ2

u))
> 0.

That is, φ < φp. Moreover,

dφp
dσ2

η

= − σ4
εσ

2
u

σ2
εσ

2
u + σ2

η(σ
2
ε + (1− α)σ2

u))
2
< 0.

Thus, reducing the noise in the public signal (less σ2
η) raises φp.
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Part 3. From (2),

ait = (1− α)Eit[θt] + α Eit[At]

= (1− α)Eit[θt−1 + ut] + α Eit
[
θt−1 +

(1− α)Auut + Ap(pt − θt−1)
1− αAu

]
(from (14))

= θt−1 + (1− α)Eit[ut] + α
(1− α)Au
1− αAu

Eit [ut] + α
Ap(pt − θt−1)

1− αAu

= θt−1 +
1− α

1− αAu
Eit [ut] + α

Ap(pt − θt−1)
1− αAu

= θt−1 +
1− α

1− αAu
(Au(ut + εit) + Ap(pt − θt−1)) + α

Ap
1− αAu

(pt − θt−1) (from (8) and (10))

= θt−1 +
(1− α)Au
1− αAu

ut +
(1− α)Au
1− αAu

εit +
Ap

1− αAu
(pt − θt−1).

Thus,

ait − θt =
(1− α)Au
1− αAu

ut +
(1− α)Au
1− αAu

εit +
Ap

1− αAu
(pt − θt−1)− ut

=
(Ap + Au − 1)ut + Ap ηt + (1− α)Au εit

1− αAu
(substituting pt − θt−1 = ut + ηt).

Thus,

(ait − θt)2 =
(Ap + Au − 1)2u2t + A2

p η
2
t + (1− α)2A2

u ε
2
it

(1− αAu)2

+
2(Ap + Au − 1)utAp ηt + 2(Ap + Au − 1)ut(1− α)Au εit + 2Ap ηt(1− α)Au εit

(1− αAu)2
.

Thus,∫
(ait − θt)2di =

(Ap + Au − 1)2u2t + A2
p η

2
t + (1− α)2A2

u σ
2
ε + 2(Ap + Au − 1)Ap utηt

(1− αAu)2
.

Thus,

E[

∫
(ait − θt)2di] =

(Ap + Au − 1)2σ2
u + A2

p σ
2
η + (1− α)2A2

u σ
2
ε

(1− αAu)2
, (15)

where we recognize that if α = 0, equation (15) simplified to
σ2
uσ

2
ησ

2
ε

σ2
uσ

2
η+σ

2
uσ

2
ε+σ

2
εσ

2
η
, which is the

variance of θt|θt−1, pt, xit. Differentiating with respect to σ2
η yields:

dE[
∫

(ait − θt)2di]
dσ2

η

=
σ4
εσ

4
u(σ

2
εσ

2
u + σ2

εσ
2
η + (1− α)(1− 2α)σ2

uσ
2
η)

(σ2
εσ

2
u + σ2

ησ
2
ε + (1− α)σ2

ησ
2
u)

3
. (16)
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Thus, if σ2
ε + (1 − α)(1 − 2α)σ2

u ≥ 0 (in particular, if α ≤ 1/2), the above derivative is
strictly positive. If, instead, σ2

ε + (1 − α)(1 − 2α)σ2
u < 0, the above derivative is strictly

positive if and only if σ2
η is sufficiently small. �

Proof of Proposition 5: To obtain E[
∫

(ait−θt)2di] with only x′it, first let ση →∞ in (15),

and then substitute σ2
ε with σ2

ε′ =
σ2
εσ

2
η

σ2
ε+σ

2
η
. Using (11), and recognizing that limση→∞Apσ

2
η =

0, the first step yields:

lim
ση→∞

(β − 1)2σ2
u + (1− α)2β2 σ2

ε

(1− αβ)2
=
σ2
εσ

2
u(σ

2
ε + (1− α)2σ2

u)

(σ2
ε + (1− α)σ2

u)
2

.

Substituting σ2
ε with σ2

ε′ yields:

σ2
ε′σ

2
u(σ

2
ε′ + (1− α)2σ2

u)

(σ2
ε′ + (1− α)σ2

u)
2

. (17)

Now, subtracting (15) from (17) yields:

∆ = E[

∫
(ait − θt)2di](x′it) − E[

∫
(ait − θt)2di](xit,pt)

=
α2σ4

ησ
4
εσ

4
u

(σ2
ησ

2
ε + (1− α)(σ2

η + σ2
ε )σ

2
u)

2(σ2
εσ

2
u + σ2

η(σ
2
ε + (1− α)σ2

u))
2

(σ4
ε (σ

2
η + σ2

u)− (1− α)2(σ2
η + σ2

ε )σ
4
u).

As expected, limα→0 ∆ = 0, because only the amount information matter; and limα→1 ∆ >
0, because then citizens put a lot of weight of the pre-existing public information from the
previous period, which need to be countered by new public information about θt. Moreover,
for any α > 0, the setting with both public and private signals (xit, pt) is a normative
improvement over the setting with only private signals (x′it) if and only if ∆ > 0, i.e., if
and only if (

σ2
ε

σ2
u

)2

> (1− α)2
σ2
η + σ2

ε

σ2
η + σ2

u

.

The result follows from inspection of this inequality. �
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