Instructor: Dan Black
Office: The currently unoccupied Keller #3047
Drop-in office hours:
Tuesdays, 6:00 – 7:00 a.m. Chicago Central Time
https://uchicago.zoom.us/j/96808698376?pwd=VEoya2JZbWhMV0V6YVdjZHRUR0VoUT09

Tuesdays, 10:00 – 11:00 a.m. Chicago Central Time
https://uchicago.zoom.us/j/92333326793?pwd=bTMzcXd3OHo1WWVFOUNRaFhKc2hudz09

Also, by appointment: please contact my administrator Lydia Veliko at lydiav@uchicago.edu to schedule an appointment.

Email: danblack@uchicago.edu

Teaching Assistants

<table>
<thead>
<tr>
<th>Angela Wyse, Head TA</th>
<th>awyse@uchicago.edu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jayoung Kang</td>
<td>jayoungk@uchicago.edu</td>
</tr>
<tr>
<td>Laura Li</td>
<td>liu10@uchicago.edu</td>
</tr>
</tbody>
</table>

Class Time: Tuesday: 7:30 to 9:00 a.m. (Central time, +6 from Greenwich time)
Thursday: 5:30 to 7:00 a.m. (Central time, +6 from Greenwich time)
Thursday: 7:30 to 9:00 a.m. (Central time, +6 from Greenwich time)

All classes and discussion sections are recorded.

Building a community: Covid-19 has made it impossible to meet in person, which limits one of the massive benefits of attending the University of Chicago: the ability to interact with the faculty and your fellow classmates. To help make it easier to get to know your classmates, TAs, and instructor, we will teach Tuesday in a large lecture; Thursday will be broken into two smaller sections; and TA sections will be on Friday in smaller groups as well. We ask, when attending live lectures, that you please turn on your video so people will get to know you. If you would prefer to have video turned off, that’s okay – but please upload a picture so your colleagues can “meet” you that way. We will also assign you to small-ish homework groups (which will be rotated once during the term) so you will get to know your classmates better.
Harris Integrity Policy for Problem Sets Involving Programming Code

Academic dishonesty will not be tolerated. If you commit plagiarism, you may receive an F and be referred to the Area Disciplinary Committee. All work must be your own. **Do not:**

- Show other students your code
- Ask for another student's code
- Use online solutions to textbook questions
- Copy large portions of code from online repositories (e.g., replication code)

Every submission begins with “This submission is my work alone and complies with the 31202 integrity policy. Add your initials to indicate your agreement: **__**”

How should you collaborate? You can clarify ambiguities in problem set questions, discuss conceptual aspects of problem sets, show output on screen (e.g. a graph or table), and show helpful documentation files.

Course Objectives

- To introduce students to statistics that are useful in the analysis of public policy data
- To provide students with basic training in the necessary computation skills to analyze data.

The specific skills:

1. Learn the basic properties of the basic functions of probabilities: cumulative distribution functions (cdf’s), probability mass functions (pmf’s), and probability density functions (pdf’s).
2. Learn the basic descriptive statistics: means, standard deviation (variance), skewness, covariances, correlation coefficients, and quantiles. Learn when these parameters are informative.
3. Learn that “parameters” are fixed values and that “estimates of parameters” are random variables.
4. Learn how to calculate estimates of these basic statistics in both Stata and R.
5. Learn the basics of hypotheses testing. Learn how to construct both null and alternative hypotheses.
6. Learn to draw the distinctions between exact and asymptotic tests. Learn when asymptotic tests will perform well and when they will not.
7. Learn how to use simulations to help understand complex statistical problems. Learn how to program estimates using simulations.
8. Learn how and when to use the bootstrap to improve on asymptotic tests. Learn how to program bootstrap estimations.
9. Understand the basics of sample design including both stratification and clustering.
10. Understand the problems associated with both unit and item nonresponse and the assumptions behind the “correction” of these problems.
11. Understand the consequences of measurement error.
12. Understand how experiments allow you to draw causal inference.

Texts

Optional: If you want something with virtually no math, but good intuitive explanations, try Charles Wheelan’s *Naked Statistics: Stripping the Dread from Data*. Charlie used to teach at the Harris School.

Other Resources

Nate Silver, *Signal and the Noise: Why So Many Predictions Fail – but Some Don’t* New York: Penguin Press, 2012. Less than $20 for the hardback, less than $12 for the Kindle. UC undergraduate, former NY Times writer, and founding editor of 538 explains prediction, which is closely related to statistics.

David Salsburg’s *The Lady Tasting Tea*. This book provides an overview of many of the ideas of statistics.

There are hundreds of statistics books. They seldom make the bestseller lists, but they are often excellent.

There are lots of very interesting online guides to the software used in this class. They include:

R:

http://r4ds.had.co.nz/
https://www.statmethods.net/

Stata:

http://data.princeton.edu/stata/
http://tutorials.iq.harvard.edu/Stata/StataIntro/StataIntro.html
http://web.mit.edu/14.31/www/stata.html
http://www.stata.com/links/video-tutorials/
Grades
We will assign grades for this course on the basis of homework assignments given through the term, a sequence of small midterms, and final homework project.

<table>
<thead>
<tr>
<th></th>
<th>Scheduled</th>
<th>Fraction of grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeworks</td>
<td>Various</td>
<td>70%</td>
</tr>
<tr>
<td>Midterms</td>
<td>On-line after discussion sections</td>
<td>30%</td>
</tr>
<tr>
<td>Final Homework</td>
<td>Due: December</td>
<td></td>
</tr>
</tbody>
</table>

If you believe that your grade on an assignment or exam is incorrect or unfair, please submit your concerns in writing to your TA within a week of its being returned. Explain fully in writing why you believe what the problems are. The TA who is responsible for the relevant question will respond in writing. If you still have concerns, you may submit them in writing to me.

Core courses at the Harris School are graded on a curve. The distribution is:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1/8</td>
</tr>
<tr>
<td>A-</td>
<td>1/4</td>
</tr>
<tr>
<td>B+</td>
<td>1/4</td>
</tr>
<tr>
<td>B</td>
<td>1/4</td>
</tr>
<tr>
<td>B- and below</td>
<td>1/8</td>
</tr>
</tbody>
</table>

Homework: Homework will be done individually. To have some people to talk with about the homeworks, I will assign homework groups where you are free to discuss issues. Groups will change over the quarter. There is also a written assignment, scheduled for completion November 9. The written assignment will count as two homework assignments.

Professional behavior: The Harris School expects faculty, staff, and students to behave always in a professional manner. Students engaged in unprofessional behavior will be reported to Academic and Student Affairs for disciplinary action. Please report any inappropriate behavior to your instructors.

Title IX Reporting Responsibilities: Your instructor and TAs for this class are designated as “responsible employees” under the US law known as Title IX. We have a duty to report incidents of sexual harassment, including sexual violence, domestic violence, dating violence, and stalking, or other misconduct to appropriate school officials.
Tentative Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture:</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td></td>
</tr>
<tr>
<td>29<sup>th</sup></td>
<td>L1 – Models</td>
</tr>
<tr>
<td>October</td>
<td></td>
</tr>
<tr>
<td>1<sup>st</sup></td>
<td>L1 – Models</td>
</tr>
<tr>
<td>6<sup>th</sup></td>
<td>L2 – Random variables</td>
</tr>
<tr>
<td>8<sup>th</sup></td>
<td>L2 – Random variables</td>
</tr>
<tr>
<td>13<sup>th</sup></td>
<td>L3 – Multivariate distributions</td>
</tr>
<tr>
<td>15<sup>th</sup></td>
<td>L3 – Multivariate distributions</td>
</tr>
<tr>
<td>20<sup>th</sup></td>
<td>L4 – Summary statistics</td>
</tr>
<tr>
<td>22<sup>nd</sup></td>
<td>L4 – Summary statistics</td>
</tr>
<tr>
<td>27<sup>th</sup></td>
<td>L5 – Central limit theorem & simulations</td>
</tr>
<tr>
<td>29<sup>th</sup></td>
<td>L5 – Central limit theorem & simulations</td>
</tr>
<tr>
<td>November</td>
<td></td>
</tr>
<tr>
<td>3<sup>rd</sup></td>
<td>L6 – Hypothesis Testing</td>
</tr>
<tr>
<td>5<sup>th</sup></td>
<td>L6 – Hypothesis Testing</td>
</tr>
<tr>
<td>10<sup>th</sup></td>
<td>L7 – The bootstrap</td>
</tr>
<tr>
<td>12<sup>th</sup></td>
<td>L7 – The bootstrap</td>
</tr>
<tr>
<td>17<sup>th</sup></td>
<td>L8 – The science of data</td>
</tr>
<tr>
<td>19<sup>th</sup></td>
<td>L8 – The science of data</td>
</tr>
<tr>
<td>24<sup>th</sup></td>
<td>Hold day (catch up or questions only)</td>
</tr>
<tr>
<td>December</td>
<td></td>
</tr>
<tr>
<td>1<sup>st</sup></td>
<td>L9 – Experiments (students not at Harris)</td>
</tr>
<tr>
<td>3<sup>rd</sup></td>
<td>L9 – Experiments (students not at Harris)</td>
</tr>
<tr>
<td>xx</td>
<td>Final Homework Project Due</td>
</tr>
</tbody>
</table>
Assignments

Lecture 1:
Readings:
P. Krugman, The Accidental Theorist
http://www.slate.com/articles/business/the_dismal_science/1997/01/the_accidental_theorist.html

M. Friedman, “The Methodology of Positive Economics” (1953)

Video:
Newton’s model

Lecture 2:
Readings:
Wooldridge, Appendix B

Videos:
Bored Work: Discrete distributions
Binomial distribution
Making your own distributions

Lecture 3:
Readings:
Wooldridge, Appendix B

Lecture 4:
Readings:
Wooldridge, Appendix B

Video:
Regression

Lecture 5:
Readings:
Wooldridge, Appendix C
Lecture 6:
Readings:
Wooldridge, Appendix C

Lecture 7:
Readings:

Lecture 8:
Readings:

Lecture 9:
Readings: