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Abstract. A principal seeks to retain good agents. Agent type is signaled with some ambient
noise. Agents can add or remove noise at a cost. We show that monotone retention strategies, in
which the principal keeps the agent above some signal threshold, are generically never equilibria.
The main result identifies an equilibrium in which the principal retains the agent if the signal
is “moderate” and replaces him otherwise. We consider various extensions: non-normal signal
structures, non-binary types, interacting agents, costly mean-shifting, dynamics with term limits,
and principal commitment. We discuss applications to risky portfolio management, fundraising,
and political risk-taking.

1. INTRODUCTION

We study a model of deliberately noisy signaling. An agent who privately knows his type (good
or bad) seeks to be retained by a principal. The principal wishes to retain a good type, and to
remove a bad type. The agent generates a noisy but informative signal centered on his type. He
can choose to amplify or reduce the precision of this process. But there are restrictions. First,
such actions are costly. Second, the signal structure is constrained by the type; specifically, the
mean of the signal is given by the type. Third, signals cannot be tampered with ex post. Specif-
ically, the signal realization cannot be augmented nor reduced: there is no “free disposal.” The
principal observes the signal realization (but not the structure), and makes a retention decision.

A study of the equilibria of such a game is the subject matter of our paper.

Minimal though this model might be, it lends itself easily to extensions and has several appli-
cations. We describe these in more detail in Section 8. One setting is portfolio management, in
which a money manager with career concerns might overload on risk in the hope of scoring big.
The principal — his client — might be able to verify the portfolio at any one point of time, so
that there is no chance of ex-post “disposal” of financial returns, but may not be aware ex ante
when a risky strategy is adopted. Moreover, while the client may be happy with a large return
today, her main goal is to find a durable relationship with a competent money manager, and in
this sense the (possibly welcome) return today is also a signal about the manager’s type.

Or consider a non-governmental organization (or NGO) of unknown competence, seeking fund-
ing from donors. The NGO could take on a safe but rather humdrum project — e.g., it could
become a social-services provider in a well-understood urban setting — with outcomes that
fairly accurately signal its competence. Or it could try something risky — perhaps a program of
disease eradication in a distant rural setting, with some chance of attention-grabbing success. A
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potential donor cannot assess these ex ante risks and only sees the final outcome. Again, while
the outcome is payoff-relevant to the donor, her concerns lie with whether the NGO should be
funded for future activities, and for this purpose the current outcome is also a signal.

Likewise, a political leader lacking in competence could try something relatively safe (such as
moderate and possibly ineffectual tweaks to an existing health care law), or could alternatively
attempt something very risky (say, a summit with a rogue power), in the hope of a spectacular
success — but simultaneously braving the chances of abject failure. Again, the median voter
may not be able to assess the risk ex ante, but would infer the extent of risk-taking, along with
the observed attendant outcome, and use these as guidelines for possible re-election.

One could continue: a government under pressure might inject noise into official statistics, an
individual might take risky steps to bolster his cv for an upcoming promotion or interview, a
less-than-competent lawyer might call a high-risk witness (who could destroy the case or win it),
an athlete might engage in doping, and so on.

In this setting, it might seem natural to study equilibria in which the principal uses a “monotone”
or threshold strategy; that is, she retains the agent when the signal realization is above some bar
and replaces him otherwise. Our first result (Proposition 1) is that such monotone strategies can
never be equilibria except for non-generic values of the parameters. Indeed, a generic equilib-
rium must invariably involve either bounded retention or bounded replacement; that is, bounded
intervals of signals in which retention or replacement occur (Proposition 2). Under the former,
bad agent types choose higher noise than their good counterparts. That noise is then more likely
to generate very good or very bad signals. The principal therefore treats both kinds of excessive
signals with suspicion, and retains the agent if and only if the signal falls in some intermediate
bounded set. In short, she follows the maxim: “if it’s too good to be true, it probably is.”

In contrast, under bounded replacement, a principal retains the agent if the returns are extreme.
In this equilibrium, a good type chooses higher noise, so a moderate signal is viewed with sus-
picion. This is a strange outcome, but it could happen; we provide examples. That said, we will
argue that of these two types of equilibria, bounded retention is the more reasonable and more
likely outcome. Indeed, for a wide range of parameters, a bounded retention equilibrium exists
(Proposition 3), and there is also an identifiable range in which it is the only kind of equilibrium
(Propositions 4 and 5): a bounded replacement equilibrium does not exist.

As already mentioned, there is no “free disposal” of signals; that is, the signal realization cannot
be manipulated “upward” nor “downward.” Let us return to our examples to illustrate this. First,
consider the money manager who looks after your funds, and ends with some realized outcome.
If you are aware of his choice of portfolio, then you have access to all realized rates of return,
high or low, even though you do not know ex ante what the right decisions are. So that realized
rate cannot be manipulated, either upward or downward, by the money manager, though in a
setting where the portfolio cannot be observed, a different assumption could be more natural.
Or imagine the political leader’s attempt to organize a summit with a rogue power. A variety of
outcomes are possible, and ex ante, one cannot predict which one it will be. What we do know,
however, is that no matter what the outcome, it cannot be taken back, or “freely disposed of.”
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The equilibria we uncover are robust to various extensions: non-normal signal structures satisfy-
ing a strong version of the monotone likelihood ratio property (Propositions 6 and 7 in Section
7.1), non-binary agent types (Proposition 8 in Section 7.2), interacting agents with privately
known types (Proposition 9 in Section 7.3), or situations in which the agent can shift the mean of
their signal, presumably at an additional cost (Section 7.4). We also introduce a simpler variant
of the model with costless choice of noise (Section 7.5 and Proposition 10), and apply this variant
to a dynamic version of the model with agent term limits, in which the principal’s outside option
from a new agent is endogenously determined (Proposition 11 in Section 7.6). We discuss appli-
cations to risky portfolio management (Section 8.1), to funding-raising by organizations (Section
8.2), and to political risk-taking (Section 8.3).

2. RELATED LITERATURE

While our main results are (to our knowledge) new, we are far from the first to study models
of deliberate vagueness or noise.1 The cheap talk literature beginning with Crawford and Sobel
(1983) can be thought of as a leading example of noisy communication. In that example nothing
binds the sender, because talk is cheap. In contrast, as explained above, our chosen communi-
cation structures must have mean equal to the true state, and the choice of structure is costly. It
is central to the analysis that each individual chooses a distribution over signals, rather than an
announcement, and cannot hide the outcome ex post.

The choice of an information structure is present in the Bayesian persuasion model of Kamenica
and Gentzkow (2011). But neither sender not receiver knows agent type ex ante, and the chosen
information structure is fully observed by the receiver. This last feature — an observed informa-
tion structure — is shared by Degan and Li (2016), but the type of the agent is privately known, as
in our model.2 In contrast, in our setting, the choice of information structure is not observed, only
the signal. These three models are complementary, and generate their own distinctive features,
on which more in Section 7.8.3

Dewan and Myatt (2008) examine a model of leadership in which an individual’s clarity in
communication is a virtue, in that it attracts attention and thereby generates influence. But clarity
also requires lower processing time from the audience, leaving more time for the audience to
listen to others. Therefore zero noise is not chosen, because a leader might wish to hold on to an
audience for longer, effectively dissuading them from listening to others.

Edmond (2013) also studies the obfuscation of states (say by a dictatorial regime). While such
obfuscation occurs through the shifting of the mean signal with the use of a costly action, he also
considers the case in which the state is communicated in a deliberately noisy way, with mean
unchanged. The noise prevents coordination by receivers against the interests of the regime.

1In this brief review we omit discussion of a related but distinct literature with exogenous noise, as in the limit
pricing game studied by Matthews and Mirman (1983), the choice of mean return by managers of unknown quality
who might seek to herd (Zweibel 1995), or inference settings when values have exogenous but unknown precision
(Subramanyam 1996).

2At the time we wrote our first draft, we were unaware of this paper, but cite it now as relevant to our work.
3There are also models of unobserved precision choice with no player types at all; see, e.g., Penno (1996) on

financial reporting.
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Edmond restricts attention in his analysis (by assumption) to receiver-actions that are monotone
in the signal realization. In contrast, in our setting, the non-monotonicity of receiver actions is a
fundamental and robust outcome of the model.

Harbaugh, Maxwell and Shue (2016) study the inclinations of a sender to distort the news about
multiple projects, depending on the overall realization of news.4 By distorting the news from bad
projects when the overall news is good, and by exaggerating the news from good projects when
the news is bad, the sender effectively adjusts the realized spread of multidimensional news over
multiple projects in opposite directions, depending on mean realizations. Such distortions are
separate from mean-preserving noisy announcements; moreover, the focus is on realized spread.
The results we develop are entirely distinct, but they too take note of a different “too-good-to-be-
true” inference problem, whereby a posterior update reverts more strongly towards the prior for
certain distributions when an extreme signal is received. Such extremeness (relative to the other
components) is therefore eschewed by the sender when the mean news is good.

Hvide (2002) studies tournaments with moral hazard where two risk-neutral agents compete for
a prize. The contractible variable is output, which is the result of their effort and a random
component. A risk-neutral committee wants to ensure that agents exert high costly effort. If
agents can costlessly increase noise in the random component of output (assumed to be normally
distributed), rewarding the agent with the highest realization of output will lead to an equilibrium
with low effort and high noise. If agents are rewarded depending on who gets closer to some pre-
stipulated, finite level of output, a high effort low noise equilibrium is achieved. Less related are
Palomino and Prat (2003) and Barron, Giorgiadis and Swinkels (2017), who also study situations
in which agents can inject noise into a moral hazard setting.5

Finally, there is a literature on policy uncertainty (see, for example, Shepsle 1972, Alesina and
Cukierman 1990, Glazer 1990, Aragones and Neeman 2000, and Aragones and Postlewaite
2007), often referred to as “strategic ambiguity.” Candidates offer policy platforms which can be
more or less ambiguous, and this ambiguity generates uncertainty about the policies the candi-
date could implement were she to win the election. (An empirical analysis of strategic ambiguity
can be found in Campbell 1983.) Ambiguity here is the result of the trade-off faced by the can-
didate between winning the election and implementing a certain policy (either his ideal policy or
the most expedient one).

3. THE MODEL

3.1. Baseline Model. An agent works for a principal. The agent can be good (g) or bad (b). He
knows his type. The principal doesn’t. She has a prior probability q ∈ (0, 1) that the agent is
good.6 At the end of a single round of interaction, to be described below, the principal decides
whether or not to retain the agent. Retention of an agent of type k = g, b yields an expected

4Footnote 2 applies here as well.
5In Palomino and Prat (2003), an agent manages a portfolio for a principal but can hide part of the return, which

forces monotonicity of any optimal contract. Barron, Giorgiadis and Swinkels (2017) study contracts that are immune
to risk-taking, thereby forcing concavity of agent payoff with respect to produced output before the noise is added. A
similar theme is also present in the endogenous risk-taking model studied in Ray and Robson (2012).

6On multiple types, see Section 7.1.
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payoff of Uk to the principal, with Ug > Ub. Non-retention yields the principal V ∈ (Ub, Ug).
The type-k agent gets a payoff equal to 1 if he is retained and 0 otherwise. The agent therefore
prefers to be retained regardless of type, while the principal prefers to retain the good agent.

The principal receives a signal from the agent, which is presumably indicative of his type. Based
on the realization of that signal, the principal decides whether or not to retain the agent. The
agent has some control over the distribution of this signal, but conditional on this, cannot alter in
any way the signal realization. Specifically, suppose that the signal is given by

x = θk + σkε,

for k = g, b, where θk is a type-specific mean with θg > θb, ε ∼ N (0, 1) is zero-mean normal
noise, and σk is a term that scales the noise. That is, the agent cannot shift the mean of his signal
(though see Section 7.4), but he can modulate its precision. The principal does not observe σk,
but observes the realization of the signal. She then decides whether to retain or replace the agent.

There is a cost to modulating precision. That is, there is some “natural” baseline degree of noise,
but deviations from that baseline are costly in either direction. Specifically, we assume that there
is a smooth, strictly convex cost function c(σ), which reaches its minimum value (normalized
to zero) at some positive noise level σ = σ. So cost increases as we depart from σ in either
direction. Assume that c(0) = c(∞) =∞; that is, it is extremely costly at the margin to be fully
precise or fully noisy. The former restriction is presumably self-explanatory. To understand the
latter, note that σ large implies that very good (and very bad) signals are generated with positive
probability, or equivalently, that the public evaluation of agent actions can be excellent or dismal.
In effect, we assume that it is costly to disguise one’s true characteristics and intentions in an
attempt to generate some chance that the evaluation will be positive.

Because V is the payoff to the principal from non-retention, the variable p ∈ (0, 1), defined by

(1) pUg + (1− p)Ub ≡ V ;

is interpretable as an “outside option probability” that leaves the principal indifferent between
retaining and replacing. How might this compare with q, the prior probability that the agent is
good? A salient benchmark is p = q; we refer to this as the balanced model. But there may be
systematic departures of p from q. Notice that V incorporates the option value of dealing with
a new agent, so in a dynamic context, p should not be smaller than q, and may well be strictly
larger.7 Call this a model with an optimistic future. If, on the other hand, our current agent is an
ongoing hire about whom some (positive) information has already been received, then p could be
smaller than q; call this a model with a pessimistic future. We allow for all three cases for now,
though in a simple dynamic extension of our model with term limits, in which V is endogenous
(Section 7.4) we will be able to whittle these alternatives down.

7Let V be the equilibrium value of restarting an interaction in an infinite horizon setting, normalized by a discount
factor δ. Assume the principal gets utility from the agent in every period, though payoffs cannot be used as signals.
Once an agent is replaced, the principal gets V again. By (1), we have V = pUg + (1− p)Ub. However, since
“replace the agent no matter what” is a feasible move for the principal at any date, we also have V ≥ (1− δ)[qUg +
(1− q)Ub] + δV when our agent is a new hire, which implies that p ≥ q.
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3.2. Equilibrium. Agent k chooses noise σk. The principal does not observe the choice of
noise, just some realization or signal x with distribution N(θk, σ

2
k). The principal uses Bayes’

Rule to retain the agent if (and modulo indifference, only if)

(2) Pr (k = g|x) =
q 1
σg
φ
(
x−θg
σg

)
q 1
σg
φ
(
x−θg
σg

)
+ (1− q) 1

σb
φ
(
x−θb
σb

) ≥ p,
where φ is the pdf of the standard normal. Rearranging, we have retention if and only if

(3)
1
σb
φ
(
x−θb
σb

)
1
σg
φ
(
x−θg
σg

) ≤ 1− p
p

q

1− q
=: β ∈ R.

Simple algebra involving the normal density yields the equivalent expression

(4)
(
σ2
g − σ2

b

)
x2 + 2

(
σ2
bθg − σ2

gθb
)
x+

(
σ2
gθ

2
b − σ2

bθ
2
g + 2Aσ2

gσ
2
b

)
≥ 0,

where A := ln (βσb/σg). The inequality (4) defines a retention regime, a zone X of signals for
which the principal will want to retain the agent. An equilibrium is a configuration (σg, σb, X)
such that given (σg, σb), X is the set of “retention signals” x which solve (4), and given X , each
type k chooses σk to maximize the probability of retention net of noise cost:

σk ∈ arg max
σ

∫
X

1

σ
φ

(
x− θk
σ

)
dx− c(σ).

4. PRELIMINARY REMARKS ON RETENTION REGIMES

Recall that a retention regime is given by a set X of signals for which the principal will want to
retain the agent.

4.1. Trivial Retention Regimes. Two examples of retention zones are (a) “always retain,” so
that X = R, and (b) “always replace,” that is, X = ∅. As far as equilibrium regimes are
concerned, these are of little interest. Both generate complete indifference across the two types
as to the noise regime. If the cost function for noise is strictly increasing away from σ, then
σg = σb = σ in such an equilibrium. But then the expression in (4) must alter sign over different
values of x, knocking out either regime. Thus trivial equilibria do not exist in our setting.

4.2. Monotone Retention Regimes. An equilibrium regime is monotone if there is a finite
threshold x∗ such that the principal replaces the agent for signals on one side of x∗, and retains
him for signals to the other side of x∗.8 See Figure 1.

8Whether x∗ is included or not doesn’t matter.
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FIGURE 1. The Symmetric Threshold x∗(σ)

A monotone retention regime arises (and can only arise) when both types transmit with the same
noise σb = σg = σ.9 Then (4) reduces to the condition

(5) x ≥ x∗ (σ) :=
θg + θb

2
− σ2

θg − θb
ln (β) ,

and in particular, the retention zone in a monotone equilibrium must be of the formX = [x∗,∞).
Loosely, x∗(σ) is the threshold above which the principal deduces that a signal from two possible
noisy sources of equal variance is more likely to be coming from the higher-mean source. In fact,
this is the exact interpretation of x∗(σ) in the balanced model with p = q, for then β = 1 and

x∗ (σ) =
θg + θb

2
,

which is the mid-point between the two means. Notice that x∗ is entirely insensitive to σ in the
balanced model. With p = q, the decision to retain is just a matter of comparing two likelihoods,
and Panel A of Figure 1 shows that the likelihood for the good type dominates to the right of
(θg+θb)/2. However, when p 6= q, retention is not simply dependent on relative likelihoods, but
also on how pessimistic or optimistic the principal feels about future agents, which is measured
by the ratio of q to p, as proxied by β. In the optimistic future setting, we have β < 1, and better
performance is required for the principal to retain the current agent; x∗(σ) is higher for each σ
as β falls. Panel B of Figure 1 depicts the consequences of an optimistic future, pushing x∗(σ)
to the right of the midpoint between θb and θg, and possibly even to the right of θg.

4.3. Non-Monotone Retention Regimes. When agents of different types transmit at different
noises, the corresponding best response for the principal is never a monotone regime. For in-
stance, when the bad type chooses higher noise than the good type, there cannot be a single
threshold for retention. Good news — but only moderately good news — offer the best likeli-
hood ratios in favor of the good type, and will generate retention. But an extremely good signal
will be regarded as too good to be true: for those signals, the higher chosen variance of the bad

9To see this, recall the retention condition (4), and notice that if σg 6= σb, then the resulting retention regime is
either trivial or non-monotone.
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FIGURE 2. Differential Noise and the Retention Decision

type will dominate the lower mean, leading to a high likelihood that the signal was emitted by
the bad type. Panel A of Figure 2 illustrates this (for the balanced case).

On the other hand, if the bad type transmits at lower noise than the good type, the retention rule is
flipped. Now replacement occurs in some bounded interval of signal realizations, but elsewhere
the principal will actually retain. See Panel B of Figure 2. We make these observations more
formal in Proposition 2 of Section 6.3.

5. MONOTONE RETENTION IS (ALMOST) NEVER AN EQUILIBRIUM

Monotone retention is a natural focal point of inquiry. The types in our model are ordered, so
that all other things being the same, the good type is more likely to generate larger signals. In
this sense larger signals appear to be prima facie evidence that the type emitting them is good.10

Indeed, in our model, an equilibrium can involve monotone retention; see Online Appendix for
a specific example. But the example isn’t robust: in “almost all” cases, the answer is no:

Proposition 1. Generically, a monotone equilibrium can not exist. Specifically, given model pa-
rameters, there is at most one common value of σ that both players must choose in any monotone
equilibrium, and this value is pinned down independently of the cost function for noise choice.

For some intuition, consider any single retention threshold as in Figure 1. In this figure, the
threshold lies strictly between the types of the two agents. As already discussed, both agent types
must choose a common noise σ. But the incentives for each type push in opposite directions away
from σ: with the cost of noise disregarded, the good type benefits from lower noise, while the
bad type wants to amplify noise. Of course, the noise cost must be factored in, but the cost of
the desired move must be non-positive for one of the two types.11 It follows that at least one

10For instance, in the context of a global game in which a sender can manipulate the noise with which signals
are emitted and seeks to prevent a coordinated attack against the sender, Edmond (2013) restricts his attention to
monotone responses. We should add, though, that noise manipulation is only one of several extensions that Edmond
studies in his paper, and it is not his main focus.

11The common value of σ is either weakly to the left or to the right of σ, and the cost function is smooth.
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FIGURE 3. Conditions for Monotone Retention

of the types will wish to deviate from the presumed equilibrium choice of σ, so no monotone
equilibrium can exist in this case.

But it’s possible that both types lie on the same side of the threshold. We need to dig deeper to
handle such cases. Type k seeks to maximize

1− Φ

(
x∗ − θk
σk

)
− c (σk)

by choosing σk, and the corresponding first-order condition is

(6) φ

(
x∗ − θk
σk

)
x∗ − θk
σ2
k

− c′ (σk) = 0,

where x∗ is given by (5). Recall that both types need to choose the same value of σ for a
monotone regime to emerge in equilibrium. Therefore, setting σg = σb = σ and defining
∆ := θg − θb, we can rewrite the first-order condition for good and bad types as

φ

(
σ

∆
ln (β) +

∆

2σ

)(
σ

∆
ln (β) +

∆

2σ

)
= φ

(
σ

∆
ln (β)− ∆

2σ

)(
σ

∆
ln (β)− ∆

2σ

)
(7)

= −σc′(σ).

Equation (7) tells us that we will need to study the function φ(z)z; Figure 3 does so. Denote
σ
∆ ln (β)− ∆

2σ by z1 and σ
∆ ln (β) + ∆

2σ by z2. Given the shape of φ(z)z, Figure 3 indicates how
z1 and z2 must be located relative to each other: they must both have the same sign and generate
the same “height.” With an optimistic future (lnβ < 0), both z1 and z2 are negative; see Panel
A. With a pessimistic future, lnβ > 0, so z1 and z2 are both positive as in Panel B. In each
case, there is only one value of σ that can solve this requirement; i.e., just one value that fits the
first equality in (7). It is entirely independent of the cost function for noise, and so the second
equality cannot generically hold. (The Appendix formalizes the argument.)
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FIGURE 4. Bounded Retention and Replacement Zones.

6. BOUNDED RETENTION AND REPLACEMENT REGIMES

6.1. Two Possible Regimes. With monotonicity out of the way, we are left with equilibria in
which the two types choose different noise levels. In Section 4.3 we suggested that there could
only be two possibilities:

1. Bounded Retention. The good type transmits with lower noise than the bad type, and Panel A
of Figure 2 applies. The principal retains the agent if the signal is good but not “too good.”

2. Bounded Replacement. In a bounded replacement equilibrium, the good type transmits with
higher noise than the bad type, and Panel B of Figure 2 is relevant. In this case, the principal
replaces the agent if the signal has moderate values, and retains him if the signal is extreme.

The reason that there are just these two possibilities, but no more, is evident from (4). Retention
or replacement zones are demarcated by values of the signal that solve a quadratic equation,
which has at most two real roots. The absence of a real root is indicative of a trivial “always-
retain” or “always-replace” regime that we have already ruled out. So there must be two real
roots, and therefore one of the two zones of retention or replacement must be a bounded interval.

Now, the quadratic criterion for replacement or retention is a feature of the normal distribution, so
we won’t make too much of it. It is perhaps possible that with more general signal distributions,
there is alternation between replacement and retention. But the general point is that one of the
two decisions must be guided by a bounded zone of signals (see Section 7.1 for more).

6.2. Equilibrium Conditions. It will be convenient to use the notation [x−, x+] to denote the
relevant interval when bounded retention occurs, and by [x+, x−] to denote the interval when
bounded replacement occurs. Figure 4 illustrates this by folding the real line on itself in a circle
so that the ends −∞ and +∞ are identified with each other. The zone of retention can then
always be thought of as the arc of the circle starting from x− and moving to x+ in a clockwise
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direction. The Figure also depicts the weighted relative likelihood of good versus bad types given
their strategies; see the irregular ovals. If that likelihood lies “outside” the circle, the good type
is more likely; if inside, the bad type is more likely. Any such equilibrium implies the following
restrictions. First, because each type k seeks to maximize Φ

(
x+−θk
σk

)
−Φ

(
x−−θk
σk

)
− c (σk) by

choosing σk, we have the necessary first-order conditions

(8) φ

(
x− − θk
σk

)(
x− − θk
σ2
k

)
− φ

(
x+ − θk
σk

)(
x+ − θk
σ2
k

)
= c′ (σk)

for each type k = g, b. Next, for x = x−, x+,

(9) β
1

σg
φ

(
x− θg
σg

)
=

1

σb
φ

(
x− θb
σb

)
represents the equalization of weighted likelihoods for the good and bad types; see Figure 4
which depicts the relative likelihoods for all realizations x. The principal is indifferent between
retaining and replacing at the points x− and x+. Third, the weighted likelihood for the good type
must have a higher slope in x relative to that for the bad type, evaluated at x−, so that retention
occurs to the right of x− (again consult Figure 4). That means

β
1

σ2
g

φ′
(
x− − θg
σg

)
>

1

σ2
b

φ′
(
x− − θb
σb

.

)
,

Because φ(z) = (1/
√

2π) exp{−z2/2} satisfies φ′ (z) = −zφ(z), this is equivalent to:

(10) βφ

(
x− − θg
σg

)
x− − θg
σ3
g

− φ
(
x− − θb
σb

)
x− − θb
σ3
b

< 0.

Likewise, the weighted likelihood for the good type must have a lower slope in x relative to that
for the bad type, evaluated at x+, so that

(11) βφ

(
x+ − θg
σg

)
x+ − θg
σ3
g

− φ
(
x+ − θb
σb

)
x+ − θb
σ3
b

> 0

This set of equations and inequalities help to narrow down the equilibria of our model.

6.3. Bounded Retention and the Type-Specific Choice of Noise. We now use these equilib-
rium conditions to make a case for bounded retention as the “more natural” outcome. Begin by
using (9) for x = x− in equation (10) to obtain(

σ2
b − σ2

g

)
x− < σ2

bθg − σ2
gθb.

In the same way, use (9) for x = x+ in equation (11) to see that(
σ2
b − σ2

g

)
x+ > σ2

bθg − σ2
gθb.

Combining these two inequalities, we must conclude that

(12)
(
σ2
b − σ2

g

)
(x+ − x−) > 0

in any non-monotonic equilibrium. This formalizes an earlier informal discussion as:

Proposition 2. Bounded retention with x+ > x− is associated with σb > σg, while bounded
replacement with x− > x+ is associated with σb < σg.
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FIGURE 5. How Choice of Noise Varies With Agent Type

In light of this proposition, we ask which type has the incentive to use greater noise. Intuitively,
it would seem that this should be the bad type — after all, if the good type could communicate
with infinite precision, she would, while the bad type would seek to disguise her characteristics.
Proposition 2 states that in that case, a bounded retention equilibrium must obtain. And yet
matters are more complex than that. Infinite precision is not available except at infinite cost, and
within the realm of positive noise choices, the good and bad types may have marginal preferences
for noise that criss-cross each other. An analysis of these two possible equilibrium regimes is
therefore closely related to an understanding of noise choices.

Optimally chosen noise moves in a subtle and quite complicated way as a player’s type moves
relative to the retention zone. Figure 5, Panel A, illustrates this for a monotone retention thresh-
old. When a player’s type is outside the retention zone and far away from the threshold, it takes a
large amount of noise to create a significant probability that a signal will be generated within the
retention zone. That’s costly, so noise converges to σ as the type moves far from the retention
zone. Moving closer to the zone, noise increases, but reaches a maximum when the type is still
some distance away. The easiest way to understand this is to think of what happens when the
type is on the edge of the zone, at which point noise makes no difference to the chances of reten-
tion, so that the noise level is back to σ again. Now continue the process by moving the type into
the retention zone. In this case, noise can throw the player out of the zone, so she seeks to lower
it. Her optimum choice therefore falls below σ. But the downward movement does not continue
forever. Deep in the retention zone, the type is confident of remaining there, and so noise goes
up again, converging again to σ, but this time from below.

With bounded retention zones, the choice function exhibits even more non-monotonicities.12

Panel B of Figure 5 shows that there will generally be five turning points. There is one each for
either side of the retention zone, for the same reason as in the earlier discussion. There are three
more within the retention zone: noise initially falls as an agent with type close to the edge avoids
escape from the zone; then rises in the middle of the zone as the risk of escape falls, then falls
again as the risk goes up, and finally rises as we approach the edge. (The noise choice at the
edges is below σ, because the retention zone is bounded.)

12Formal details are available on request from the authors.
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6.4. Existence of Equilibrium With Bounded Retention. In what follows, we retain the com-
plexities discussed above as they are not merely technical but intrinsic to the economics of the
problem. But there are other complications that we did not emphasize. The single-peakedness
of the noise distribution generates a non-convexity in the agent’s optimization problem, which
raises the possibility that an agent’s choice could be multi-valued. For monotone or bounded
retention regimes, such multivaluedness is more a technical nuisance than a feature of any eco-
nomic import,13 and we rule it out by assumption:

[U] For every monotone or bounded retention zone and for each agent type, the optimal choice
of noise is unique.

It is possible to deduce [U] by placing alternative primitive restrictions on the parameters of the
model. One is that the curvature of the cost function is large enough. The Appendix shows that
a sufficient condition for [U] is

(13) c′′ (σ) >
κ

σ2
for all σ ∈ [σ∗, σ

∗],

where κ ≈ 0.6626, and σ∗ and σ∗ are two distinct lower and upper bounds on noise that straddle
σ, such that c(σ∗) = c(σ∗) = 1.

While [U] is a technical restriction of little economic import, the next assumption we impose is
substantive. Recalling that we normalized the agent’s payoff from retention to equal 1, and from
replacement to equal 0, it is obvious that no agent would ever choose a level of noise outside the
interval [σ∗, σ

∗]. Now imagine that both agents transmit common noise equal to the upper limit
σ∗. We know already that the principal would respond by choosing a single threshold x∗(σ∗) for
retention, described by equation (5), reproduced here for convenience:

x∗ (σ∗) =
θg + θb

2
− σ∗2

θg − θb
ln (β) .

We ask that this threshold must lie in [θb, θg].

This implies a restriction on the parameters of the model; specifically, on β. The assumption
states that when the agent chooses common noise (equal to σ∗), the principal will “start retaining”
from a threshold smaller than θg, and replace when a realized signal lies below θb. This requires
the weighted relative likelihood for the type being good or bad to flip sign at some intermediate
point between θb and θg. It should be noted that this condition is automatically satisfied in the
balanced case with β = 1, because in that case, as already observed, x∗ (σ∗) = (θg + θb)/2.
More formally, we can write this condition as a set of restrictions on the extent to which β can
depart from 1 “on either side.” That is, we want the future to be neither too optimistic nor too
pessimistic. Do this by subtracting the formula for x∗(σ∗) from θb and then θg to obtain

(14) − ∆2

2σ∗2
≤ ln(β) ≤ ∆2

2σ∗2
.

Proposition 3. Under Conditions [U] and (14), there is an equilibrium with bounded retention.

13For bounded replacement regimes, the possibility of multiple solutions is more natural. For instance, an agent
located in one of the two retention zones to the side, but close to the replacement zone, could be indifferent between
a small and a large choice of noise.
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The proof provides some intuition for the result, so we loosely outline it here. Begin by searching
for any equilibrium via a fixed-point mapping. The very first box in Figure 6 delineates the
domain of that mapping. No agent will choose noise below σ∗ or above σ∗, so we have a compact
domain. The image of this mapping is derived as follows: for each (σg, σb), find the retention
decision of the principal, shown in the middle graph (where x− and x+ are chosen), and then
record the best response to that decision, shown by the continuation mapping into the last box, a
replica of the one we started from. A fixed point of this mapping will yield an equilibrium.

The problem is that this fixed point mapping is not well-behaved. For any point (σg, σb) in
the domain with σb < σg, the planner will best-respond with bounded replacement, and the
“subsequent” response that completes the mapping is generally not continuous in (σg, σb). This
discontinuity problem is endemic. Given that the retention region (under bounded replacement)
is made out of separated zones, the choice of two or more noise levels that maximize retention
probabilities is generally unavoidable. With that multiplicity in place, discontinuities in the
fixed-point mapping are unavoidable. The simplest fixed-point approach is a dead end.

However, given our specific interest in the existence of a bounded retention equilibrium, we
want to start from an even smaller domain, which is the shaded triangle in the left box, over
which σb ≥ σg. This subdomain is better-behaved — the principal chooses bounded retention
(or a monotone threshold) as a best response, and the best response by the agents to each such
retention policy is unique (by Condition U) and therefore continuous. But now the problem
is different: it may well be that the mapping slips out of the smaller domain. In general, this
slippage cannot be controlled. In Panel B of Figure 5, we have a bounded retention zone that
could arise from some “starting” (σg, σb) with σb > σg. And yet in response, type g chooses
larger noise as illustrated, which propels the system out of the triangle. See the lower pair of
arrows in Figure 6.

At the same time, the mapping on the smaller domain has an interesting property. On the bound-
ary between the two subdomains, the mapping “points inwards” whenever (14) holds. Look at
the upper pair of arrows in Figure 6. The first arrow in the pair maps a point on the principal
diagonal of the square (where σb = σg) to a monotone retention regime; that is, (x−, x+) is of
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the form (x∗,∞). By our restriction on β in condition (14), x∗ must lie between θb and θg. So
the good type wants to reduce noise to remain within the retention zone, while the bad type wants
to increase it. That means that the good type must choose noise σb < σ, while the opposite is
true of the bad type. But that implies a best response with σb > σg, which takes us back into the
starting subdomain from its boundary. (It also implies, in passing, that under condition (14), a
monotone equilbrium cannot exist, whether generically or otherwise.) A fixed point theorem due
to Halpern (1968) and Halpern and Bergman (1968) then completes the argument, establishing
the existence of a bounded retention equilibrium when β does not take on “extreme” values.

In summary, we have shown that when the future is neither too optimistic nor too pessimistic —
and certainly when it is balanced — a bounded retention equilibrium must exist. Indeed, it could
be the only equilibrium, as the following proposition suggests:

Proposition 4. When β = 1, every equilibrium involves bounded retention. More generally:

(i) It cannot be that σb ≤ σ ≤ σg.

(ii) If σg < σ and β ≤ 1, then σb > σg and there can only be bounded retention.

(iii) If σg > σ and β ≥ 1, then σb > σg and there can only be bounded retention.

While these propositions are by no means a universal claim for bounded retention, it is true that
moderate values of β do appear to be incompatible with bounded replacement. In Section 6.5, we
will see that this is indeed the case: we can rule out bounded replacement equilibria for moderate
values β. The case β = 1 in Proposition 4 is a good benchmark: it means that the prior q on the
current agent equals the “effective prior” p on future agents.

6.5. Non-Existence of Bounded Replacement Equilibrium for Moderate β. Moderate de-
grees of optimism or pessimism about the future are not only conducive to the existence of a
bounded retention equilibrium, they push against the existence of a bounded replacement equi-
librium. For instance, assume a sizable difference between the two types; specifically, that

(15) θg − θb ≥ σ∗,
where recall that σ∗ is defined by the larger of the two solutions to c(σ) = 1.

Proposition 5. Assume that Condition (14) used in Proposition 3 holds, and so does (15). Then
only bounded retention equilibria can exist.

While the Appendix contains a formal proof, it is easy enough to illustrate the main argument.
Consider the same fixed point mapping used to establish the existence of a bounded retention
equilibrium. The first component of this mapping takes noise choices (σg, σb) ∈ [σ∗, σ

∗]2 to
best responses by the principal of the form (x−, x+). These responses, as already noted, could
involve bounded retention (x− < x+), bounded replacement (x− > x+) or monotone regimes
(x+ =∞). In all these cases, conditions (14) and (15) can be used to show that the bad type must
lie outside the retention zone, while the good type lies in it. Now consider the second component
of the fixed point mapping in which the agents react to these retention and replacement zones.
The Appendix formally shows that in all such situations, the bad type exerts more noise in a
quest to land inside the retention zone, while the good type attempts to reduce noise so as not
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FIGURE 7. Possible Configurations for Bounded Replacement Equilibria

to wander out of it. In short, σb > σg. But now we’ve established that starting from any
(σg, σb) ∈ [σ∗, σ

∗]2, the mapping points into the shaded triangle of Figure 6 in which σb >
σg. Consequently, every equilibrium must have σb > σg, which — as we know already from
Proposition 2 — must involve bounded retention.14

The heart of the argument for Proposition 5 concerns the location of types relative to replacement
and retention zones. Figure 7 illustrates the exceptions. The density for the bad type is the thicker
line in both cases. The Figure shows that β must be so large or so small (that is, the future is
either super-optimistic or super-pessimistic) so that the intersection points of the two weighted
densities are either on one side of both the mean types, or straddle them both.15 These are the
only two possible kinds of bounded replacement equilibria. For completeness, the Appendix
provides examples for each of them. In one, both types are embedded in the retention zone as
in Panel A of Figure 7, with x+ < x− < θb < θg. Because they want to remain there, both
want noise lower than the ambient level. But the bad type is closer to the edge, so he will make
a bigger effort than the good type to stay safe, and σb < σg. To justify this configuration as an
equilibrium, the future must be super-pessimistic: q � p.

In the second example, as in Panel B of Figure 7, both θb and θg lie in the replacement zone,
with x+ < θb < θg < x−, and both exert costly effort to escape it. The good type is embedded
closer to the edge of the zone and has a high marginal benefit of noise, while the bad type is
embedded deep in the zone and has only a low marginal benefit. The good type therefore exerts
greater noise. The principal reacts by choosing a bounded replacement zone. To implement this
equilibrium, the future must be super-optimistic: p� q.

14In particular, the careful reader will have noticed that under the additional restriction imposed by (15), the
Halpern-Bergman theorem no longer needs to be invoked to prove Proposition 3; Brouwer will suffice.

15This argument shows, in particular, that Panel B of Figure 2 — which we put forward as a possible candidate
for a bounded replacement equilibrium — cannot ever be a full equilibrium satisfying both best response conditions.
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7. EXTENSIONS

In this Section, we describe several variations on the model. Section 7.1 replaces the normality
restriction by signal structures that satisfy a strong version of the monotone likelihood ratio
property. Section 7.2 studies non-binary agent types. Section 7.3 considers more than one agent,
each with privately known type. Section 7.4 studies situations in which the agent can shift the
mean of their signal, presumably at an additional cost. Section 7.5 introduces a simpler variant
of the model with costless choice of noise. Section 7.6 applies this variant to a dynamic version
of the model with agent term limits, in which the principal’s outside option from a new agent
is endogenously determined. Section 7.7 we evaluate whether the principal can benefit from
committing ex ante to retention rules. Finally, Section 7.8 compares our setting with two related
but distinct alternative formulations.

7.1. Non-Normal Signal Structures. Consider the following generalization of our model: the
signal x is given by:

(16) x = θk + σkε,

where ε is distributed according to some differentiable density function f , which is positive on
all of R, with mean normalized to 0. The density for x given type k is

g (x|k) =
1

σk
f

(
x− θk
σk

)
Assume that f satisfies the monotone likelihood ratio property (MLRP) so that when two types
transmit with the same noise, larger signals are increasingly likely to be associated with the
higher type. Indeed, we assume that the relative likelihood for the good type climbs without
bound as x→∞, while the opposite is true as x→ −∞. Formally, we assume

Strong MRLP. f(z − a)/f(z) is increasing in z whenever a > 0, with

(17) lim
z→∞

f(z − a)

f(z)
=∞ and lim

z→−∞

f(z − a)

f(z)
= 0.

In particular, the limit conditions ensure that a monotone regime is possible for any value of
β ∈ (0,∞), provided both types use the same noise. The normal density satisfies (17).

Proposition 6. Assume the signal structure is the one in (16), and satisfies strong MLRP. Then:

(i) Generically, a monotone equilibrium can not exist. Specifically, given model parameters,
there is at most one common value of σ that both players must choose in any monotone equilib-
rium, and this value is pinned down independently of the cost function for noise choice.

(ii) All other equilibria will have σb 6= σg, and will involve either a bounded retention zone or a
bounded replacement zone.

This proposition follows the same argument as in the basic model. Strong MLRP delivers the
observation that “spreads dominate means,” which is the argument that sends likelihood ratios
for extreme signals in favor of the type using the higher spread. Therefore, a monotone equi-
librium can only arise if both types are choosing the same amount of noise. The non-genericity
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of identical choices then follows lines similar to that for normal noise. The boundedness of
either retention or replacement zones in equilibrium is an easy though not logically immediate
consequence.16

We end this section with two observations. First, while we have not emphasized this so far, the
boundedness of retention (or replacement) zones does not imply that such zones are necessarily
intervals. Second, it would be useful to establish an analogue of Proposition 3: that bounded
retention equilibria do exist for a intermediate interval of β values. The following proposition
goes some way towards answering both questions.

Proposition 7. Assume that the model is balanced or has a pessimistic future, so β ≥ 1. Then,
every bounded retention equilibrium must employ a bounded interval for retention.

It is easy to combine this Proposition with analogues of Conditions U and (14) to obtain an
existence theorem for bounded retention equilibrium. Specifically, if agents make unique choices
of noise for every bounded or monotone retention interval, and if the future is not too pessimistic,
then a bounded interval retention equilibrium must exist.

7.2. Multiple Types. We extend Proposition 1 to many types. We can do so at a level of gen-
erality that nests the two-type case, but it is expositionally easiest to assume that there is a prior
on types given by some density q(θ) on R. Let Q be the space of all such densities and give it
any reasonable topology; for concreteness, think of Q as a subset of the space of all probability
measures on R with the topology of weak convergence. A subsetQ0 ofQ is degenerate (relative
to Q) if its complement Q−Q0 is (relatively) open and dense in Q.

Given q ∈ Q, each agent of type θ chooses noise σ(θ) as in the baseline model. Following the
choice of noise, a signal is generated. The principal obtains payoff u(θ) from type θ, where u
is some nondecreasing, bounded, continuous function. There is some given continuation payoff
— V — from replacing an agent, which reasonably lies somewhere in between the retention
utilities: limθ→−∞ u(θ) < V < limθ→∞ u(θ). We also make the generic assumption that u(θ)
is not locally flat exactly at V . As before, the principal maximizes expected payoff by deciding
whether or not to retain the agent after each signal realization, and agents do their best to get
retained, with the cost of noise factored in.

Proposition 8. Fix all the parameters of the model except for the type distribution. Then, under
Condition U, an equilibrium with a monotone retention regime can exist only for a degenerate
subset of density functions over types.

We outline the argument here (see Appendix for details). Think of a monotone retention regime
of the form [x∗,∞). Figure 5 describes the optimal noise response; it attains a maximum at some
distinguished value θ∗ < x∗. This picture translates perfectly as we move x∗ around: θ∗ moves
with x∗ staying at a fixed distance t∗ from it, and this distance t∗ is completely independent of
the underlying density of types q(θ).

Now, we’ve already seen the sender with the highest noise enjoys the highest likelihood of having
transmitted signals at the extreme ends of the line. That must mean that conditional on such

16In principle, a non-monotone equilibria could involve perennially alternating zones of retention and replacement.
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extreme signals, the expected utility to the receiver must approximate u(x∗−t∗). But then u(x∗−
t∗) ≥ V , for if not, a very large positive signal would be met with replacement, contradicting
our presumption that the retention zone is [x∗,∞). But it can’t be that strict inequality holds,
for if it did, a very large negative signal would be met with retention, again contradicting our
presumption. In short, u(x∗− t∗) = V . Because t∗ is fixed (as already argued), and because u is
not locally constant at V , this argument fully pins down the retention threshold x∗ independent
of the density of types.

But that points rather straightforwardly to a non-generic situation. After all, because x∗ is the
retention threshold, the receiver must be indifferent between replacement and retention at x∗;
that is, the expected utility at x∗ must be exactly V . But only a non-generic choice of density
can guarantee that happy coincidence.

7.3. Multiple Agents. We’ve assumed that there is a single agent of unknown type. Suppose
there are two agents, 1 and 2, who simultaneously signal their types, and the principal must
decide which agent to retain. She wants to retain the better agent — or one of them, if she is
indifferent. This sort of structure brings us closer to a model of political campaigns.

Assume that it is common knowledge that only one of the two agents is good. The agents know
their own types and therefore both types. But they look identical ex ante to the principal, so her
prior places equal probability on the two. The communication technology is unchanged:

(18) xi = θk(i) + σk(i)εi,

where i = 1, 2, and k(i) denotes i’s type. The errors are independent and identically distributed
standard normal random variables. In this game, by symmetry, a strategy for agent i is a function
σ : g, b → R+. As for the principal, a strategy is a function r : R2 → {1, 2}, which indicates
for every possible pair of signals (x1, x2) the agent she wants to retain. After observing (x1, x2)
the principal retains agent 1 if (and, modulo indifference, only if)

(19)
1
σg
φ
(
x1−θg
σg

)
1
σb
φ
(
x1−θb
σb

) ≥ 1
σg
φ
(
x2−θg
σg

)
1
σb
φ
(
x2−θb
σb

) .
In this setting, a monotone equilibrium is defined as one where the principal retains the agent
with the higher signal value. Once again, monotonicity can only be achieved if both types of
agent play the same σ, but that won’t happen.

Proposition 9. If an equilibrium exists, it can only be the case that σb > σg, and the principal
retains agent 1 if and only if |x1 − x̂| ≤ |x2 − x̂|, where x̂ = (σ2

bθg − σ2
gθb)/(σ

2
b − σ2

g) is

the signal value that maximizes the likelihood ratio 1
σg
φ
(
x−θg
σg

)
/ 1
σb
φ
(
x−θb
σb

)
. In particular,

monotone equilibria do not exist.

The proof of this proposition is long and involved, and we relegate it to the Online Appendix.
Intuitively, when both types choose the same level of noise, the principal retains the one with the
higher signal realization. But the bad type then wants to inject additional noise, since the good
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type has a lot of probability mass around his (higher) mean. At the same time, and for the same
reason, the good type wants to decrease noise.

Next, assume an equilibrium features σb < σg. If this is the case, the principal will respond by
retaining the agent whose signal is further away from x̂ = (σ2

bθg − σ2
gθb)/(σ

2
b − σ2

g), which is

the value that minimizes the likelihood ratio 1
σg
φ
(
x−θg
σg

)
/ 1
σb
φ
(
x−θb
σb

)
, and it is to the left of θb.

Then, it turns out that the best way for the bad type to escape from defeat is to inject additional
noise (whereas it is unclear whether the good type wants to increase noise or precision), so σb >
σ. This, together with the fact that the conjectured equilibrium features c′ (σb)σb > c′ (σg)σg
(see the proof), implies that σb > σg, and hence a contradiction.

Our result bears a broad resemblance to Hvide (2012), who studies tournaments with moral
hazard, when agents can influence both the mean and spread of their output. In equilibrium,
there is excessive risk taking. By setting an intermediate value for output and rewarding the
agent who gets closer to this threshold, the principal can do better.

7.4. Mean-Shifting Effort. We can easily augment the baseline model to include effort to shift
the mean value of one’s type. For instance, suppose that each agent k is endowed with some
baseline value (or type) θk (with θg > θb). He can augment θ using a cost function d(θk − θk),
common to both types, where d defined on R+ is increasing, strictly convex and differentiable,
with d′ (0) = d (0) = 0. The signal sent is then given by xk = θk + σkε. Finally, the principal
makes a decision to retain or replace.

Parts of this model fully parallel our setting. The principal makes her decisions on the basis of
conjectured means and variances chosen by each type, leading to the familiar conditions (9)–(11)
for the retention edge-points x− and x+. Similarly, an agent of type k maximizes the probability
of retention net of cost. Whether or not x− is smaller or larger than x+ (and even when x+ =
∞ as it will be with monotone retention), the agent always maximizes Φ ([x+ − θk]/σk) −
Φ ([x− − θk]/σk) − c (σk), but this time by choosing both σk and θk. The first-order condition
for σk is unchanged; what this extension adds is a first-order condition for θk, given by

(20)
1

σk
φ

(
x− − θk
σk

)
− 1

σk
φ

(
x+ − θk
σk

)
≤ d′ (θk − θk) ,

with equality holding if θk > θk. This additional condition can be used to show that the extension
fully mimics the original model: we must have θb < θg, with other choices of noise and principal
decisions just as in our baseline setting; see Online Appendix for details.

This extension is also useful for understanding other aspects of the noisy relationship between
principal and agent. For instance, mean-shifting effort for the sake of retention could be directly
valuable to the principal, apart from providing information about type.17 If neither that effort nor
the payoff-relevant “output” from it is contractible, then the principal could want to structure her
environment to keep agent effort high. Of particular interest is the case in which the background
noise σ is close to zero, so that the agents can communicate their types with very high precision.

17For other models of relational contracts in which effort provides both current output and information about
match quality, see, Kuvalekar and Lipnowski (2018), Kostadinov and Kuvalekar (2018) and Bhaskar (2017).
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In general, this limit model has several equilibria, some pooling and some separating. To see the
issue that arises, let’s concentrate on a particular parametric configuration in which θg and θb are
sufficiently separated from each other so that

(21) d (θg − θb) > 1.

In this case it is easy to see that there can be only separating equilibria in zero-ambient-noise
limit. In each such equilibrium, the bad type exerts no effort whatsoever. The principal cannot
incentivize the agent because there is no noise in the signal. Both types reveal themselves per-
fectly. There are still many equilibria possible in which the good type is forced to exert effort
to raise θg beyond θg, simply because the principal’s retention set is some singleton {θg} with
θg > θg. But these equilibria are shored up by the “absurd belief” that observations between θg
and θg are attributable to the bad type. These configurations can be eliminated by standard re-
finements, leaving only the least-cost separating equilibrium in which retention occurs if x = θg,
and no agent exerts any effort at all. Condition (21) guarantees that the bad type will not want to
mimic the good type in this case.

If mean-shifting effort is separately valuable to the principal, this outcome is undesirable to
her. The solution will therefore involve the principal adding noise, thereby ensuring that the
bad type has some chance of being retained, and so incentivizing him. In any equilibrium of
such an extended model in which the principal can move first, the principal will choose σ > 0,
endogenously injecting noise into the system.

7.5. A Variant With Costless Noise. Our results assume a smoothly convex noise cost function.
Of course, this assumption is consistent with the choice of noise being essentially costless over
a wide range, as long as the cost mounts up at “either end.” In this section, we consider a simple
but attractive variant of our model: suppose that any level of noise can be costlessly chosen, as
long as it is no smaller than σ. Any choice smaller than σ is impossible. The condition σ > 0 is
a minimal requirement for the problem to have any interest: otherwise, the high type can always
reveal himself by choosing σg = 0, and there is nothing to discuss. Let’s call this the costless
noise model.

This costless noise variant admits a particularly sharp solution. Define a function α (β) by

(22) β ≡ 1

α (β) +
√

1 + α (β)2
exp

− α (β)

α (β) +
√

1 + α (β)2

 .
Notice that α(β) is well-defined, that α(β) > 0 for all β < 1 and α(β)→ 0 as β → 1. We will
assume that σ is small enough so that:

(23)
σ

θg − θb
<

1

2
α(β)−1 if 0 < β < 1.

and

(24)
σ

θg − θb
<
[√

2 ln (β)
]−1

if β > 1
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Notice how these conditions become progressively weaker as we converge to the balanced case
from either direction (i.e., as p and q get close to each other). At or near the balanced case, no
restrictions are imposed at all; both right-hand side terms in (23) and (24) diverge to infinity.

One annoying price to pay for this simpler model is that without an upper bound to noise, there
could be a fully uninformative in which both types babble with infinite noise and the principal
always retains or always replaces. We ignore such equilibria. Thus say that an equilibrium is
nontrivial if the principal retains the agent for some signals and replaces for others.

Proposition 10. (i) A nontrivial equilibrium exists if and only if (23) is satisfied, and when it
exists, it is unique.

(ii) If (24) is also satisfied, then the nontrivial equilibrium involves bounded retention. In it,
the good type chooses σg = σ, the bad type chooses higher but finite noise σb > σg, and the
principal employs a strategy of the form: retain if and only if the signal x lies in some bounded
interval [x−, x+].

(iii) In particular, in the balanced case or with an optimistic future, (24) trivially holds and the
equilibrium must involve bounded retention.

(iv) If (24) happens to fail, then the nontrivial equilibrium involves a monotone retention regime,
with both types choosing noise equal to σ. The principal retains if and only if x ≥ x∗(σ).

We relegate a formal proof to the Online Appendix.

In particular, Proposition 10 asserts that in the balanced case, there is a unique equilibrium with
no restrictions at all on σ; both (23) and (24) are vacuous. As in our baseline model, when p = q,
only bounded retention equilibria are possible. More generally, suppose that p ≥ q, which means
that the situation is either balanced or has an optimistic future. Then Condition (24) imposes no
restriction at all, and we will now argue that a nontrivial equilibrium must use bounded retention.
If this assertion is false, then a nontrivial equilibrium must involve either bounded replacement
or a monotone threshold. The former is easily dispensed with — with bounded replacement,
either type would want to inject unboundedly high noise to minimize the chances of landing in
the replacement zone.18 As for the latter, suppose that the principal employs a single retention
threshold given by x∗ ∈ (θb, θg). Then the good type wants to minimize noise in order to pull
more probability mass into the retention region, whereas the bad type wants to increase noise.
This is incompatible with a monotone retention regime. On the other hand, if x∗ > θg, both
agents will react by wanting to inject additional noise. We are therefore left only with bounded
retention, and the formal proof shows that such an equilibrium must exist under Condition (23).19

18The non-existence of bounded replacement survives more robust arguments which allow for a finite upper bound
to the choice of noise. See Online Appendix for more details.

19It is possible that in equilibrium, the principal discards both types of agents irrespective of signal, simply be-
cause the option value of a new agent is too high and the minimum noise σ in the current environment too large.
Condition (23), which bounds σ, is necessary and sufficient for eliminating this possibility. Moreover, in any reason-
able “general-equilibrium closure” of this model, the failure of (23) is absurd: if both types are let go, where would
the optimism regarding a new agent come from in the first place? We formalize this argument in Section 7.6, when
we endogenize p.
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Finally, with a pessimistic future (q > p), the principal is wary of new hires and inclined to
retain the current agent. Now Condition (23) is empty, and a nontrivial equilibrium always
exists. Under a symmetric choice of noise, it is entirely possible that the retention threshold falls
below θb. Faced with that low threshold, both types will want to reduce noise to the minimum
possible, and now there is scope for a nontrivial equilibrium with monotone retention regime,
in which both types choose noise σ, while the receiver employs a single threshold x∗(σ). That
scope dwindles, however, when σ is small: the smaller it is, the more sharply is the receiver able
to distinguish between good and bad types. Condition (24) on σ is necessary and sufficient for
eliminating the monotone equilibrium.

7.6. Dynamics With Term Limits. So far we have studied a static setting, but at the same time
we’ve hinted more than once that the “outside option probability” p could, in principle, be solved
for in a dynamic setting. We study the case in which the agent has a two-period “term limit,” after
which he must be replaced. This is useful for applications to politics, and also — but perhaps
in a more limited way — to situations in which the agent is an employee or a contracted expert,
such as a fund manager. In what follows we study stationary equilibrium, in which every new
agent of a given type takes the same action independent of history.

For noise σk for each player of type k, and for each realization x, the Bayes’ update on q is

(25) q(x) :=
qπg(x)

π(x)
,

where for each k, the density of signal x is given by πk(x) = (1/σk)φ ([x− θk]/σk), and where
π(x) = qπg(x) + (1− q)πb(x) is the overall density of signal x.

We can use this information to calculate the lifetime payoff to the principal at the start of any new
interaction. To this end, let M(q′) := q′Ug + (1− q′)Ub be the expected payoff to the principal
in any period when her prior (for that period) is given by q′. This prior equals q for a fresh draw
from the pool at any date. At the end of the first term, a signal x is generated, and the prior q is
updated to q(x). At this stage, the principal decides whether or not to retain for one more period,
after which the term limit kicks in.

If V denotes the normalized lifetime payoff to the principal starting from a fresh agent, we can
define a retention zone X as the set of all x for which (1− δ)M(q(x)) + δV ≥ V . The lifetime
value to the principal can then be expressed as

V = (1− δ)M(q) + δ

∫
X

[(1− δ)M(q(x)) + δV ]π(x)dx+ δ

∫
Xc

V π(x)dx

= (1− δ) [q(1 + δΠg)Ug + (1− q)(1 + δΠb)Ub] + δ [1− (1− δ)Π]V,

where Πk :=
∫
X πk(x)dx is the type-dependent probability of retention, and Π := qΠg +

(1 − q)Πb is the overall probability of retention. (The second equality above follows from the
definition of M and (25).) Transposing terms, we see that V is a convex combination of baseline
utilities Ug and Ub; i.e., V = pUg + (1− p)Ub, where

p =
q (1 + δΠg)

1 + δ [qΠg + (1− q) Πb]
.
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We can rewrite this expression to obtain a “general equilibrium formula” for the ratio β:

(26) β =
q

1− q
1− p
p

=
1 + δΠb

1 + δΠg
.

Now observe that in any equilibrium, Πg ≥ Πb. That has to be the case, because the principal
can — and will — choose a retention zone that retains the high type at least as often than the low
type. Indeed, it is not even possible to have β equal to 1 in any equilibrium.20

This setup reveals a clear strategy to solve the two-term dynamic extension of our model. For
some (provisionally given) value of β, we obtain the baseline static model. Solve for the equi-
librium there. That equilibrium will generate retention probabilities Πg and Πb. The circle is
closed by the additional condition that (β,Πg,Πb) must solve (26).

Our costless noise variant in Section 7.5 is particularly amenable to solving for the details. In
that model, noise is costless but bounded below by some number σ > 0. In this setting, we have:

Proposition 11. When agents can be hired for up to two terms, and the principal always has
the option to replace agents with a new draw from a stationary pool, there is a unique equilib-
rium which has all the properties of the non-trivial equilibrium identified in Proposition 10. In
particular, there are no trivial equilibria. Moreover, this unique equilibrium must endogenously
display an optimistic future and conditions (23) and (24) do not need to be assumed.

Proposition 11 says that in a dynamic extension of the model in Section 7.5 with a two-term
limit, the equilibrium picks out precisely the two-threshold equilibrium with bounded retention
regime, as described in Proposition 10 of the static model. Observe that that equilibrium in the
static model does not always exist; after all, σ needs to be small enough as described in conditions
(23) and (24). Those conditions are automatically satisfied here. So Proposition 11 is not just a
mere refinement of the static equilibrium that eliminates all monotone and trivial equilibria. It
does that, to be sure, but in addition it guarantees that for any value of σ > 0, the dynamically
determined value of p must adjust itself so that conditions (23) and (24) are automatically met.

7.7. A Remark on Commitment. To what degree are the results altered if the principal can
commit ex ante to a retention zone? We do not have a full answer to this question, though
it appears that the main findings would be unaffected. In the simple model of costless noise
developed in Section 7.5, it turns out that the results are not affected at all.

Suppose that the realization x is contractible, and that the principal announces an incentive-
compatible mechanism that specifies the retention probability for each value of x, and for each
(declared) type of agent. The agent can then choose one of the rules — revealing his type — and
then a noise level. We assume that the rule, given by rk (x) ∈ [0, 1] is piece-wise continuous.21

20Suppose β = 1. Then p = q, and we know that in the static model only bounded retention equilibria are
possible. But in that situation the principal can strictly discriminate in favor of the good type, since there will always
exist two distinct real roots to (4). But now Πg > Πb, which contradicts our starting point that β = 1.

21We conjecture that Proposition 12 below is true for all measurable functions.
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For any type k, rule r and chosen noise σ, define

ρk(r, σ) :=
1

σ

∫ ∞
−∞

r(x)φ

(
x− θk
σ

)
dx,

which is to be interpreted as the overall retention probability for type k when the retention func-
tion is r and he chooses noise σ. The principal seeks to maximize her surplus

(27) qρg (rg, σg) (Ug − V )− (1− q) ρb (rb, σb) (V − Ub)
by “choosing” rk and σk for k = g, b, subject to

(28) σk ∈ arg max
σ̃≥σ

ρk (rk, σ̃)

and

(29) ρk (rk, σk) ≥ max
σ̃≥σ

ρk (r`, σ̃) .

for each k and ` 6= k. The first of these constraints is the familiar choice of noise, and the latter
comes from truthful revelation of type. But notice that this latter constraint cannot be slack for
type b at the optimum. If it were, the principal could simply reduce the retention probability rb22

— which makes her happier (the expression in (27) goes up), continues to respect (29) for type
b, and does no damage to (28) and (29) for type g.

We must conclude, therefore, that (29) binds for type b; that is, ρb(rb, σb) = ρb(rg, σ
′
b), where σ′b

maximizes ρb(rg, σ̃). Using (27), this further implies that the principal is completely indifferent
between type b reporting his type and facing rb, or misreporting his type and facing rg. So,
without any loss of generality, the principal may as well offer the agent a single retention function
r (x). That gives rise to a new problem with just one rule, no self-selection constraint (29) for
either type, and just payoff maximization (28) for each type. To summarize this new problem,
note that by definition of p, V − Ub = (Ug − Ub) p and Ug − V = (Ug − Ub) (1− p). Using
these in (27), the principal equivalently maximizes

(30) βρg (r, σg)− ρb (r, σb) ,

where β is q(1− p)/p(1− q) as defined earlier, and where for each k = g, b,

(31) σk ∈ arg max
σ̃

ρk (r, σ̃) .

A single retention rule notwithstanding, there is still room for commitment, because the principal
can influence the choice of noise. Yet in the context at hand, the principal has no use for it:

Proposition 12. Assume condition (23), so that a nontrivial equilibrium exists in the costless
noise model. Then an optimal contract involves the same retention function (a.e.) and the same
values σ∗b and σ∗g as in the nontrivial equilibrium of Proposition 10.

That is, the solution to the principal’s problem with commitment is the same as the no-commitment
or equilibrium solution, in the special case of the model with costless noise. For a similar result
in a different context (and for distinct reasons), see Glazer and Rubinstein (2004, 2006) and Hart,
Kremer and Perry (2016).

22She can judiciously remove intervals where rb(x) > 0 to drive retention probability continuously from ρb to 0.
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7.8. Two Related Formulations. Under Bayesian persuasion, a theme pursued in Kamenica
and Gentzkow (2011), a principal observes a signal sent by the agent and uses Bayes’ rule to
update her prior. The agent wants to choose a signaling structure to maximize the chances that
the receiver’s posterior will cross a certain threshold (in our case, a threshold probability that the
sender is of an acceptable type). In this setting, and in contrast to ours, it is presumed that the
sender does not know his type before he chooses the signal structure, and he cannot re-optimize
after knowing his type. In addition, the sender’s choice of structure is observed by the receiver.

A second variant of the model is one in which the agent does possess private information about
his type, but the principal can directly observe the agent’s choice (of signal structure); see Degan
and Li (2016).23 In this variant, the agent’s observed choice of risk can directly reveal informa-
tion about his type, over and above the realization of that risk. In a separating equilibrium, then,
signal realizations convey no additional information, because type separation has already been
achieved via the observed choice of noise. When agents pool, signal realizations do matter, but
retention is indeed monotonic in the signal. This is obviously a very different setting from that
of the model studied here. See our comments on Dasgupta and Prat (2006) in Section 8.1 for
more detail in the context of a specific application.24

Our model generates distinct behavior, by virtue of the fact that both the type and the signal
structure are unobserved by the principal. These three formulations all have distinct applications
— we discuss some applications of our model in Section 8 to follow — but overall, the three
models apply to different situations, so the preference for any one over the others would depend
on the real-world situation at hand.

8. APPLICATIONS

Our model separates three distinct features: the action (or the choice of risk), the realization of
the signal, and the subsequent inference and decision of the principal. A central implication of
the model is that the realizations may be “good” — even in the sense of generating high payoffs
for the principal today. At the same time, they could serve as a cautionary indicator for a great
deal of risk-taking by the agent, which may well generate a negative inference in agent ability.
This may sound contradictory, but as long as we properly separate the current payoff-relevance
of a signal realization from its role qua signal, there is no inconsistency here.

We discuss three applications: to risky portfolio management (Section 8.1), to the behavior of
organizations that seek donor funding (Section 8.2), and to the actions of political leaders (Sec-
tion 8.3). In each case it should be noted that (a) the choice of action by the agent corresponds
to a choice of risk, (b) it is reasonable to suppose that such risk cannot be fully understood (i.e.,
observed) ex ante by the principal, and (c) the outcome, apart from being intrinsically good or

23They also study situations in which signal precision is chosen before agent type is realized; this is closer to the
Kamenica-Gentzkow setting, though precision is constrained to be type-independent.

24For a related exercise, see Titman and Trueman (1986), in which observed auditor quality is used to signal firm
valuation during an initial public offering. (Higher-quality auditors provide more precise information, by assumption.)
An entrepreneur with more favorable private information about the value of his firm will choose a higher-quality
auditor than will an entrepreneur with less favorable private information.
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bad, serves as an indicator for the extent of risk-taking, thereby leading to some form of inference
about the agent’s competence.

8.1. Risky Portfolio Managers. An investment advisor (the agent) manages your (the princi-
pal’s) portfolio, which yields an uncertain return. Assume you have no idea which stocks are
likely to yield good returns: if you did, presumably you would be managing your money your-
self. You do have an overall idea of the distribution of returns, though, perhaps calibrated to the
ex post performance of stock indices or various mutual funds. Managers have varying knowhow
about the prospects of various stocks, summarized in some mean return (their type).25 But they
can also take (mean-preserving) risks. You observe just the net return x on the portfolio built for
you by the manager. You might observe the portfolio as well, but if you know very little about
individual stocks this will mean little or nothing to you. In short, you cannot use the portfolio to
judge the wisdom of the agent’s strategy. That means that risk-taking is unobservable.26

Our model then tells us that bad managerial types will endogenously load up on financial risk
so as to try and achieve good returns. So you, the principal, should be suspicious not just when
returns are low, but also when returns are excessively high. It is not because you fear risk-taking
per se; in this setting you only care about expected payoffs. The central point is that there are
career concerns at work which manifest itself through excessive risk-taking.27

The specific point that uninformed managers might actively trade is not new. Dasgupta and
Prat (2006) consider a setting in which a fund manager faces career concerns. He trades — or
passively holds — an asset for a principal who decides whether to retain the manager or not. The
good managers know the precise value of the asset, to be later revealed to all. The bad manager is
uninformed. The principal wants to retain the good manager, and replace the bad manager. Since
the principal observes whether the manager sold, bought, or did nothing, there is an incentive for
the bad manager to trade. Because that manager doesn’t know what the real value of the asset is,
he randomizes between selling and buying, or “churns.”

In this setting, the manager’s action is observed and assessed by the principal. In ours, we
effectively assume that the action (risk-taking) isn’t observed, for the reasons discussed above.
This distinction is important. If actions are observed and can be interpreted — e.g., if buying or
selling is known to be generically optimal — then a separating equilibrium cannot exist in which
the bad type does nothing. That consideration, by itself, is enough to deliver churning.

That is why a good outcome is always a reason for retention in the Dasgupta-Prat analysis. A
principal does not discard a manager who performs “too well,” under the suspicion that he has

25So our model fits well but not perfectly. Ideally, we would allow managers to choose both the mean and the
variance of the portfolio. The latter could well be costless — imagine loading pure risk on by the use of options,
for instance. The former would require costly effort that would vary with manager type. This extended model — in
a dynamic setting — is pursued in McClellan and Ray (2018). The use of risky gambles by managers with career
concerns is studied in a dynamic setting by Makarov and Plantin (2015).

26Of course this is an exaggeration, as some excessively risky ventures may be commonly understood to be risky.
Eliminate these from consideration here.

27It is possible to argue that a manager has access to a wider set of distributions that those achieved through some
risk ordering. For instance, the manager could sell call options to truncate his returns at the top. But even with this
wider range there cannot exist a monotone equilibrium as long as the manager can feasibly load up on risk.
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been engaged in excessive risk-taking. We do not claim any empirical support for this prediction,
though anecdotal evidence on financial ventures or Ponzi schemes that promise (and initially
deliver) high rates of return suggests that careful individuals often stay away from such ventures
— to be sure, others don’t. We simply put this forward as a necessary corollary of our result, one
that perhaps deserves some empirical scrutiny.

8.2. Fundraising. Consider a non-governmental organization (or NGO) of unknown compe-
tence, seeking funding from donors. An NGO of low competence could take on a safe project.
For instance, if it is a microfinance organization, it could move into tested localities, or it could
simply emulate what other pioneer microfinance entities have done: for instance, only providing
working capital loans, which maintains the ongoing dependence of the borrower on the NGO and
serves as an incentive device for repayment. Or the NGO could move into uncharted locations
(and in new ways), where knowledge of ground realities is more dispersed and the risks are far
greater. For instance, it could start making fixed capital loans, where the payoffs could be large
(unlike in the case of working capital, fixed-capital loans can start new businesses). At the same
time, such a project could bomb quite spectacularly if there is widespread default.

The donor has no local knowledge, and so cannot observe these risks ex ante. As per our model,
it can form expectations about what NGOs with different competencies might try out, and react
accordingly after reading the description of NGO achievements in its funding proposal. Those
achievements may well be payoff-relevant to the donor, but her concerns lie with whether the
NGO should be funded for future activities, and for this purpose those achievements serve only
as signals, and a very unusual success may be an indicator of excessive risk-taking.

Again, the choice of action — do something standard, versus attempt something “creative” —
can be proxied by different levels of risk-taking. Donors, unaware of ground realities, may not
be aware of all the attendant risks, and so do not observe the action per se. The signal realization
is what the NGO achieves. The inference attempts to separate current success from what it says
about future performance. While not pretending that our equilibrium describes how NGOs and
donors interact (though by all means not suggesting that it doesn’t either), there is some evidence
that these considerations do motivate NGOs. In their study of locational choices among NGOs
in Bangladesh, Fruttero and Gauri (2005, p. 778–779) write:

“The regressions showed that brand NGO programmes were moving to the same places as new
government programmes, and that non-brand NGO programmes were not. Brand NGOs, in
other words, were not substituting for government programmes but instead following them. This
is consistent with a reputation-building story for new NGOs. Brand NGOs that have established a
reputation of high ability have more to lose in choosing areas without other programmes. Hence
their decision may be driven by the desire to minimise the risk. On the other hand, non-brand
NGOs, which need to single themselves out, go to areas in which they can show their ability.”

8.3. Risky Politics. Think of a political leader, the assessment of whose competence is currently
important, and who seeks to be “retained” by the median voter (who plays here the role of the
principal). If that leader is competent, he can attempt to play it safe by implementing unambitious
policies, and so the better will be the fix that the public obtains about his true type — though
convergence to that understanding may be far from total. In contrast, the incompetent leader can
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entertain a risky policy: for instance — and only speaking hypothetically — he might attempt to
conduct a denuclearization summit with the authoritarian leader of a rogue state. Such a summit
is obviously fraught with risk, though it is may be impossible for the public (or the median
voter) to assess, ex ante, just how much risk there is. If that project is successful, an otherwise
incompetent politician might stand a chance for re-election. Barring that, there is no chance.

Our model suggests that a striking success from such a policy — if, continuing the hypothetical
streak, one were to occur — should be treated with a certain degree of reticence by the median
voter. It could be a sign of extreme competence. It could also be sign of a desperate move by a
largely incompetent individual, which happened to pay off. That outcome, if it occurs, may be
good for society. But it may not be a good signal on which to base re-election.

The same is generally true of ambiguity and obfuscation in the political arena. A bad politician
cannot fully imitate a good politician. What he can do is to try to look like a good politician to the
extent possible. In addition to a concrete policy as described above, that could also imply being
ambiguous, inconsistent and generally obscure about attributes, intentions, and policy agenda,
or encouraging the spread of fake news. A potential voter might interpret the vague messages in
many different ways, both positive and negative.

Under this interpretation, the agent’s action is the choice of ambiguity and obfuscation, which
we model as a choice of risk (regarding the extent of public approval of those messages, or
regarding the verification or debunking of claims made). So in this example, a particular signal
realization can be identified with the public’s interpretation of the politician’s messages.28 It
might appear that there is a paradox between that interpretation being a positive one and the
subsequent reticence that the model calls for on the part of the median voter. But — as in the
other applications as well — there is no paradox: a good current outcome might still be a reliable
indicator for excessive risk-taking by the agent.

9. SUMMARY

We’ve studied a model in which an agent who seeks to be retained by a principal might delib-
erately inject noise into a process that signals his type. Possible equilibrium regimes include
monotone retention, in which a principal retains if an agent’s signal is high enough, and vari-
ous non-monotone regimes. Of these, we argue that bounded retention is the salient equilibrium
regime. In it, different types of agents choose different degrees of noise, with worse agents be-
having more noisily. The resulting equilibrium has a “double-threshold” property: the principal
retains the agent if the signal is good, but neither too good nor too bad. We discuss extensions to
non-normal signal structures, non-binary agent types, multiple agents each with privately known
types, situations in which the agent can shift the means of their signals, at an additional cost, a
dynamic version of the model with agent term limits, and environments in which the principal
can ex ante commit to retention rules.

We believe that the deliberate injection of ambiguity or noise is a central feature of many
principal-agent interactions. We have discussed some of them: risky portfolio management,

28To the extent that such interpretations are themselves stochastic, this also justifies the assumption of some
ambient noise, that is, σ > 0.
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fundraising by new NGOs, and politics. We make the central assumption that the extent of noise
cannot be directly observed by the principal, and must be inferred. Even though this assumption
might be violated in some settings, there are many other situations where the receiver does not
ex ante fully understand the risk or the full set of all possible options available to the agent.
By modeling these situations as constraints on the observability of risk, our framework makes a
contribution towards the understanding of such environments.

APPENDIX: SOME PROOFS AND MISSING DETAILS

Details in the Proof of Proposition 1. Recall (7) from the main text; this is the equation that σ
must satisfy if it commonly chosen by both types:

(32) φ(z1)z1 = φ(z2)z2 = −σc′(σ),

where z1 = (σ/∆) ln (β)− (∆/2σ) and z2 = (σ/∆) ln (β) + (∆/2σ). The function φ (z) z has
the shape shown in Figure 3, reaching maxima and minima at z = 1 and z = −1 respectively,
and exhibiting “negative symmetry” around 0. Using (7), this tells us that there are two exclusive
possibilities: (i) either β > 1 and σ < σ, or (ii) either β < 1 and σ > σ. We study (i); Case (ii)
is dealt with in the same way.

In Case (i), elementary computation shows that z2, viewed as a function of σ (holding all other
terms constant) starts from infinity as σ = 0, declines to a minimum of

√
2 ln (β), and then

climbs monotonically again to∞ as σ → ∞. Meanwhile, z1 is always increasing in σ, and is
exactly zero when z2 reaches its minimum. From this point on, φ(z1)z1 climbs from 0 to its
maximum value of φ(1) and then falls, while φ(z2)z2 falls monotonically from a positive value
to zero. Finally, we note that in the phase where φ(z1)z1 falls, we have φ(z1)z1 > φ(z2)z2

throughout. Putting these observations together, we must conclude that there is a unique value
of σ such that the first equality in (32) holds, and it is independent of the cost function c.

Proof of Proposition 3. Recall that σ∗ < σ and σ∗ > σ are the two solutions to c(σ) = 1. Let
Σ := [σ∗, σ

∗]2, and define

Σ+ := {(σg, σb) ∈ Σ|σb ≥ σg}.

For each σ ∈ Σ+, define x− and x+ by the distinct lower and upper roots to (4) if σb > σg;
otherwise, if σb = σg = σ, set x− = x∗(σ) as defined in (5) and x+ = ∞. Interpret [x−, x+]
as the retention zone. Call this map Ψ1. As discussed in the main text, this map is well-defined
when σb = σg. To check that Ψ1 is also well-defined when σb > σg, we must show that there
are two distinct real roots to the quadratic in (4), or equivalently, using the elementary formula
for quadratic roots, that the expression

∆2 +
(
σ2
b − σ2

g

)
2 ln

(
β
σb
σg

)
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is strictly positive. But (14) tells us that ln(β) ≥ −[∆2]/2σ∗2, and so

∆2 +
(
σ2
b − σ2

g

)
2 ln

(
β
σb
σg

)
= ∆2 +

(
σ2
b − σ2

g

)
2 ln

(
β
σb
σg

)
≥ ∆2 +

(
σ2
b − σ2

g

)
2 ln (β)

≥ ∆2

[
1−

σ2
b − σ2

g

σ∗2

]
> 0,

where the very last inequality uses σ∗ ≥ σb > σg. So there are distinct roots x− < x+, and by
exactly the same logic as for Proposition 2, the zone [x−, x+] must involve retention.

Next, for each pair (x−, x+) with x+ > x− and with x+ possibly infinite, define (σ′b, σ
′
g) to

be the best-response choices of noise by the bad and good types who face the retention zone
[x−, x+]. By condition [U], these choices are well-defined and unique. Call this map Ψ2.

Finally, define a map Ψ with domain Σ+ and range Σ by Ψ := Ψ2 ◦ Ψ1. We claim that Ψ is
continuous. We first argue that Ψ1 is continuous in the extended reals. That is:

(i) if (σng , σ
n
b )→ (σg, σb) with σb > σg, then Ψ1(σg, σb) = (x−, x+) with x− < x+ <∞, and

it is obvious that Ψ1(σng , σ
n
b )→ Ψ1(σg, σb).

(ii) if (σng , σ
n
b )→ (σg, σb) with σb = σg, then Ψ1(σg, σb) = (x−,∞). In this case, an inspection

of the quadratic condition (4) (the roots of which yield x− and x+) reveals that Ψ1(σng , σ
n
b ) =

(xn−, x
n
+) must satisfy xn+ →∞.

Now we turn to the map Ψ2. As already mentioned, condition [U] guarantees that best-response
noise choices are unique, as long as x+ > x−. They are fully characterized by the first-order
condition (8), which we reproduce here for convenience:

(33) φ

(
x− − θk
σk

)(
x− − θk
σk

)
− φ

(
x+ − θk
σk

)(
x+ − θk
σk

)
= σkc

′ (σk)

where we include the possibility that x+ =∞ by setting φ(z)z = 0 when z =∞.

Pick any sequence (xn−, x
n
+) that converges in the extended reals. That is, either the sequence

converges to (x−, x+) with x+ < ∞, or it converges to a limit of the form (x−,∞). Let σnk
be the best responses for an agent of type k, and let σk be the best response at the limit value
(x−, x+). When x+ < ∞, it is obvious from (33) that σnk → σk. In the latter case, the fact that
σnk → σk follows from the additional observation that φ(zn)zn → 0 for any sequence zn →∞.

We claim that Ψ is inward pointing; that is, for every (σg, σb) ∈ Σ+, there exists a > 0 such that

(34) (σg, σb) + a[Ψ(σg, σb)− (σg, σb)] ∈ Σ+.

First observe that for every (σg, σb) ∈ Σ+, we have (σ∗, σ∗) ≤ Ψ(σg, σb) ≤ (σ∗, σ∗). Therefore,
if (σg, σb) ∈ Σ+ with σb > σg, (34) is easily seen to hold: for a > 0 and small, it must be that
both components of the vector

(σg, σb) + a[Ψ(σg, σb)− (σg, σb)]
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lie in [σ∗, σ
∗], and the second component is larger than the first. The remaining case is one in

which (σg, σb) ∈ Σ+ with σb = σg. In this case, we know from condition (14) that Ψ1(σg, σb)
is of the form (x−, x+) = (x∗,∞), where x∗ ∈ [θb, θg]. From the first-order conditions that
describe each type — see (6) — it is easy to see that σk ≷ σ when x∗ ≷ θk. Therefore
Ψ2(x∗,∞) = (σ′g, σ

′
b) must have the property that σ′b > σ′g (and of course each component lies

between σ∗ and σ∗). It follows that for every a ∈ (0, 1), (34) holds, and the claim is proved.

To summarize, we have: Σ+ is a nonempty, compact, convex subset of Euclidean space, and Ψ
is continuous on Σ+. In general, however, Ψ will fail to map from from Σ+ to Σ+. However, the
map is inward pointing in the sense of Halpern (1968) and Halpern and Bergman (1968); for an
exposition, see Aliprantis and Border (2006, Definition 17.53). By the Halpern-Bergman fixed
point theorem (see Aliprantis and Border 2006, Theorem 17.54), there exists (σg, σb) ∈ Σ+

such that Ψ(σg, σb) = (σg, σb). It is easy to see that (σg, σb), along with the associated bounded
retention zone Ψ1(σg, σb), forms an equilibrium.

Lemma 1. In any equilibrium: (i) if σb > σg then x+ > x++x−
2 > θg, and (ii) if σb < σg then

x+ < x++x−
2 < θb.

Proof. When σb 6= σg, x− and x+ are both finite and given by (4). It is easy to check that

x+ + x−
2

=
σ2
bθg − σ2

gθb

σ2
b − σ2

g

.

So if σb > σg then x+ > x++x−
2 > θg and if σb < σg then x+ < x++x−

2 < θb.

Lemma 2. In any equilibrium with finite values for x− and x+ and for either type k,

(35) φ

(
x− − θk
σk

)
> φ

(
x+ − θk
σk

)
.

Proof. Suppose first that σb > σg. By Lemma 1(i), (x+ + x−)/2 > θk and so

x+ − θk
σk

>
θk − x−
σk

which implies, using the single-peakedness and symmetry of φ around 0, along with the fact that
x+ > x− in this case, that

φ

(
x+ − θk
σk

)
< φ

(
θk − x−
σk

)
= φ

(
x− − θk
σk

)
,

which establishes (35) for σb > σg. On the other hand, if σb < σg, then (x+ + x−)/2 < θk by
Lemma 1(ii), so that

x+ − θk
σk

<
θk − x−
σk

.

Once again, using the single-peakedness and symmetry of φ around 0, but this time the fact that
x+ < x−, we must conclude that

φ

(
x+ − θk
σk

)
< φ

(
θk − x−
σk

)
= φ

(
x− − θk
σk

)
,
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which establishes (35) for σb < σg, and so completes the proof.

Lemma 3. In any equilibrium with bounded retention or replacement, so that σb 6= σg,

1

σb
c′ (σb) > β

1

σg
c′ (σg) and σbc′ (σb) > βσgc

′ (σg) .

Proof. To prove the first assertion, combine the inequalities in (10) and (11), while invoking the
two first-order conditions in (8), to conclude that

1

σb
c′ (σb) = φ

(
x− − θb
σb

)
x− − θb
σ3
b

− φ
(
x+ − θb
σb

)
x+ − θb
σ3
b

> β

[
φ

(
x− − θg
σg

)
x− − θg
σ3
g

− φ
(
x+ − θg
σg

)
x+ − θg
σ3
g

]
=

β

σg
c′ (σg) .

To prove the second assertion, use (9) in (8) for the good type to obtain

(36) φ

(
x− − θb
σb

)(
x− − θg
σb

)
− φ

(
x+ − θb
σb

)(
x+ − θg
σb

)
= βσgc

′ (σg) ,

and compare this to the first-order condition for the bad type, which is given by:

(37) φ

(
x− − θb
σb

)(
x− − θb
σb

)
− φ

(
x+ − θb
σb

)(
x+ − θb
σb

)
= σbc

′ (σb)

Invoking (35) of Lemma 2, we see that the expression[
φ

(
x− − θb
σb

)
− φ

(
x+ − θb
σb

)][
θg − θb
σb

]
is strictly positive. But adding this term to the left-hand side of (36) yields the left-hand side of
(37). We must therefore conclude that σbc′ (σb) > βσgc

′ (σg), and our proof is complete.

Proof of Proposition 4. The first assertion of the proposition is a simple consequence of (i)–(iii),
to which we now turn. If (i) is false, then c′ (σb) ≤ 0 and c′ (σg) ≥ 0, which contradicts Lemma
3. For (ii), if σg < σ then c′ (σg) < 0. Then Lemma 3 implies

c′ (σb)

c′ (σg)
< βmin

{
σb
σg
,
σg
σb

}
< β,

so that c′(σb)/c′(σg) < 1 when β ≤ 1. Rearranging (and keeping in mind that c′(σg) < 0), we
have c′(σb) > c′(σg), or σb > σg.

To prove (iii), assume σg > σ. Then c′ (σg) > 0, and Lemma 3 implies that

c′ (σb)

c′ (σg)
> βmax

{
σb
σg
,
σg
σb

}
> β.

If β ≥ 1, this inequality implies σb > σg.

Lemma 4. Under (14) and (15), x+ < θb < x− < θg in a bounded replacement equilibrium.
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Proof. Consider a bounded replacement equilibrium. Then σg > σb. Recall (4), which states
that retention is strictly optimal if

(38)
(
σ2
g − σ2

b

)
x2 + 2

(
σ2
bθg − σ2

gθb
)
x+

(
σ2
gθ

2
b − σ2

bθ
2
g + 2Aσ2

gσ
2
b

)
> 0,

(where A = ln (βσb/σg)), and replacement is strictly optimal if the opposite inequality holds.
Putting x = θb in (38) and simplifying, we see that replacement is strictly optimal at θb if

β <
σg
σb

exp
∆2

2σ2
g

,

but this is guaranteed by the right hand inequality of (14), because σg > σb and σg ≤ σ∗.
Therefore θb lies in the interior of the replacement zone, or put another way, x+ < θb < x−.

Now putting x = θg in (38) and simplifying, we see that retention is strictly optimal at θg if

(39)
∆2

2σ2
b

+ ln (σb)− ln(σg) > − ln(β).

The derivative of the left hand side of (39) with respect to σb is given by

1

σb

(
1− ∆2

σ2
b

)

which is strictly negative given (15) and σb ≤ σ∗, so it follows that the left hand side of (39) is
minimized by setting σb = σg = σ∗. To establish (39), then, it is sufficient to have

∆2

2σ∗2
> − ln(β),

but this is guaranteed by the left hand inequality of (14). Consequently, the principal strictly
prefers to retain the agent if she observes x = θg. Given x+ < θb < x−, this can only mean that
x− < θg, and the proof is complete.

Proof of Proposition 5. Suppose that a bounded replacement equilibrium exists. Then we have
σg > σb and x− > x+. By Lemma 4, we have θg ≥ x− ≥ θb > x+.

Define Bk (σ) to be type-k’s marginal benefit of noise:

(40) Bk (σ) := φ

(
x− − θk

σ

)
x− − θk
σ2

− φ
(
x+ − θk

σ

)
x+ − θk
σ2

.
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That this is indeed the marginal benefit can be seen easily by recalling (8), which sets this ex-
pression equal to marginal cost. Observe that for every σ,

Bb (σ) = φ

(
x− − θb

σ

)
x− − θb
σ2

− φ
(
x+ − θb

σ

)
x+ − θb
σ2

≥ φ

(
x+ − θb

σ

)
x− − θb
σ2

− φ
(
x+ − θb

σ

)
x+ − θb
σ2

= φ

(
x+ − θb

σ

)
x− − x+

σ2

> φ

(
x+ − θg

σ

)
x− − x+

σ2

= φ

(
x+ − θg

σ

)
x− − θg
σ2

− φ
(
x+ − θg

σ

)
x+ − θg
σ2

≥ φ

(
x− − θg

σ

)
x− − θg
σ2

− φ
(
x+ − θg

σ

)
x+ − θg
σ2

= Bg (σ) ,(41)

where the first weak inequality follows from x− ≥ θb and inequality (35) of Lemma 2, the first
strict inequality follows from φ single-peaked around zero and x+ − θg < x+ − θb < 0, and the
last weak inequality follows from x− ≤ θg and (again) inequality (35) of Lemma 2.

But (41) leads to the following contradiction: if the marginal benefit of noise for the bad type
strictly exceeds that for the good type at every noise level, then by a simple single-crossing
argument, we must have σb > σg. But by Proposition 2, this contradicts the fact that we are in a
bounded replacement equilibrium.

Proof of the Propositions in Section 7.1. We begin with a summary of some properties for
densities f satisfying the strong MLRP.

Lemma 5. Suppose that f satisfies strong MLRP. Then f ′(z)/f(z) is decreasing in z. In partic-
ular, f must be single-peaked, first strictly increasing and then strictly decreasing.

Proof. Elementary differentiation of f(z − a)/f(z) with respect to z establishes the result.

Lemma 6. Pick any θ and θ′, and any positive σ and σ′. Define for any x:

h(x) ≡
f
(
x−θ
σ

)
f
(
x−θ′
σ′

)
(i) If σ = σ′ and θ > θ′, then h(x) is strictly increasing in x with limx→−∞ h(x) = 0 and
limx→∞ h(x) =∞.

(ii) If σ > σ′, then limx→∞ h(x) = limx→−∞ h(x) =∞.

Proof. Part (i): Define z(x) ≡ (x− θ′)/σ and a ≡ (θ − θ′)/σ. Then, because σ = σ′, we have

h(x) =
f (z(x)− a)

f (z(x))
.
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Because z(x) is affine and increasing in x, the result follows directly from strong MLRP.

Part (ii): Observe that there exists ε > 0 such that for x sufficiently large, (x − θ)/σ ≤ (x −
[θ′ + ε])/σ′. Moreover, for x large enough, f is decreasing (by Lemma 5). It follows that for all
x so that both these conditions are satisfied,

f
(
x−θ
σ

)
f
(
x−θ′
σ′

) ≥ f
(
x−[θ′+ε]

σ′

)
f
(
x−θ′
σ′

) ,

and now, using part (i), the right hand side of this inequality goes to infinity as x→∞. The case
x → −∞ follows parallel lines: switch (θ, σ) and (θ′, σ′) in the argument above, notice that f
is increasing for x sufficiently negative (Lemma 5), and use part (i) again.

Proof of Proposition 6. Note that an equilibrium is monotone if and only if σb = σg. For if
σb = σg, then Lemma 6(i) tells us that there exists x∗ with

(42) βf

(
x− θg
σ

)
≥ f

(
x− θb
σ

)
if and only if x ≥ x∗ (with strict inequality when x > x∗). So the principal retains whenever
x ≥ x∗. Conversely, if σb 6= σg, then the equilibrium cannot be monotone. Indeed, if σg > σb,
then by Lemma 6(ii),

βf

(
x− θg
σ

)
> f

(
x− θb
σ

)
for all x sufficiently large and positive, or sufficiently large and negative. But that means retention
must occur for all such x, which proves that the replacement zone must be bounded. In similar
vein, if σb > σg, then the retention zone must be bounded. This argument establishes not only
that monotonicity is characterized by σb = σg, it also proves the boundedness of at least one
zone of retention and replacement, and proves part (ii) of the Proposition.

To prove part (i), suppose that an equilibrium is monotone. Then σb = σg as just proved. Now,
an agent of type k seeks to maximize

1− F
(
x∗ − θk
σk

)
− c (σk) ,

so that the corresponding first-order condition is given by

(43) f

(
x∗ − θk
σk

)
x∗ − θk
σ2
k

− c′ (σk) = 0.

Because σg = σb = σ and c′ is injective, the two first-order conditions together imply that

(44) f

(
x∗ − θg
σ

)
(x∗ − θg) = f

(
x∗ − θb
σ

)
(x∗ − θb) .

Furthermore, (42) tells us that

βf

(
x∗ − θg
σ

)
= f

(
x∗ − θb
σ

)
,
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and combining this with (44), we must conclude that

(45) x∗ =
θg − βθb

1− β
.

The value of x∗ is thus completely pinned down by the system parameters. At the same time,
going back to equation (44), we have

(46)
f
(
x∗−θg
σ

)
f
(
x∗−θb
σ

) =
x∗ − θb
x∗ − θg

.

By the strong MLRP there exists a unique value of σ that satisfies (46). It follows that (45)
and (46) fully determine the values of σ and x∗ without paying any attention to the first-order
condition (43), which must also be satisfied. But that imposes an independent condition on the
cost function c (σ).

Proof of Propositions 7–12. See the Online Appendix.

REFERENCES

Alesina, A. and A. Cukierman (1990), “The Politics of Ambiguity,” The Quarterly Journal of
Economics 105, 829–850.

Aliprantis, C. and K. Border (2006), Infinite Dimensional Analysis: A Hitchhiker’s Guide,
Springer, Third Edition.

Aragones, E. and Z. Neeman (2000), “Strategic Ambiguity in Electoral Competition,” Journal
of Theoretical Politics 12, 183-204.

Aragones, E., Palfrey, T. and A. Postlewaite (2007), “Political Reputations and Campaign Promises,”
Journal of the European Economic Assosiation 5, 846-884.

Aragones, E. and A. Postlewaite (2002), “Ambiguity in Election Games,” Review of Economic
Design 7, 233-255.

Barron, D., Giorgiadis, G., and J. Swinkels (2017), “Optimal Contracts with a Risk-Taking
Agent,” mimeo.

Bhaskar, D. (2017), “The Value of Monitoring in Dynamic Screening,” mimeo., Department of
Economics, New York University.

Blume, A. and O. Board (2014), “Intentional Vagueness,” Erkenntnis 79, 855–899.

Blume, A., Board, O. and K. Kawamura (2007), “Noisy Talk,” Theoretical Economics 2, 395-
440.

Campbell, J. (1983), “Ambiguity in the Issue Positions of Presidential Candidates: A Causal
Analysis,” American Journal of Political Science 27, 284-293.



38

Crawford, V. and J. Sobel (1982), “Strategic Information Transmission,” Econometrica 50, 1431–
1451.

Dasgupta, A. and A. Prat (2006), “Financial Equilibrium with Career Concerns,” Theoretical
Economics 1, 67–93.

Degan, A. and M. Li (2016), “Persuasion with Costly Precision,” mimeo., Department of Eco-
nomics, Concordia University.

Dewan, T. and D. Myatt (2008), “The Qualities of Leadership: Direction, Communication and
Obfuscation,” The American Political Science Review 102, 352-368.

Edmond, C. (2013), ”Information Manipulation, Coordination, and Regime Change,” Review of
Economic Studies 80, 1422-1458.

Fruttero, A. and V. Gauri (2005), “The Strategic Choices of NGOs: Location Decisions in Rural
Bangladesh,” Journal of Development Studies 41, 759–787.

Glazer, A. (1990), “The Strategy of Candidate Ambiguity,” The American Political Science Re-
view 84, 237-241.

Glazer, J. and A. Rubinstein (2004), “On Optimal Rules of Persuasion,” Econometrica 72, 1715–
1736.

Glazer, J. and A. Rubinstein (2006), “A Study in the Pragmatics of Persuasion: A Game Theo-
retical Approach,” Theoretical Economics 1, 395–410.

Harbaugh, R., Maxwell, J. and K. Shue (2016), “Consistent Good News and Inconsistent Bad
News,” mimeo., Indiana University.

Hart, S., Kremer, I. and M. Perry (2016), “Evidence Games: Truth and Commitment,” mimeo.

Hvide, H. (2002), “Tournament Rewards and Risk Taking,” Journal of Labor Economics 20,
877-898.

Kamenica, E. and M. Gentzkow (2011), “Bayesian Persuasion,” American Economic Review
101, 2590-2615.

Kostadinov, R. and A. Kuvalekar (2018), “Learning in Relational Contracts,” mimeo., Depart-
ment of Economics, New York University.

Kuvalekar, A. and E. Lipnowski (2018), “Job Insecurity,” mimeo., Department of Economics,
University of Chicago.

Makarov, I. and G. Plantin (2015), “Rewarding Trading Skills without Inducing Gambling,”
Journal of Finance 70, 925–962.

Matthews, A. and L. Mirman (1983), “Equilibrium Limit Pricing: The Effects of Private Infor-
mation and Stochastic Demand,” Econometrica 51, 981–996.

McClellan, A. and D. Ray (2018), “Contracts for Financial Managers Who Can Take on Risk,”
mimeo., Department of Economics, New York University.



39

Palomino, F. and Prat, A. (2003), “Risk Taking and Optimal Contracts for Money Managers,”
RAND Journal of Economics 34, 113–137.

Penno, M. (1996), “Unobservable Precision Choices in Financial Reporting,” Journal of Ac-
counting Research 34, 141–149.

Ray, D. r© A. Robson (2018), “Certified Random: A New Order for Coauthorship,” American
Economic Review, 108, 489–520.

Shepsle, K. (1972), “The Strategy of Ambiguity,” American Journal of Political Science 66,
555–568.

Stein, J. (1989), “Cheap Talk and the Fed: A Theory of Imprecise Policy Announcements,” The
American Economic Review 79, 32–42.

Subramanyam, K. (1996), “Uncertain Precision and Price Reactions to Information,” The Ac-
counting Review 71, 207–219.

Titman, S. and B. Trueman (1986), “Information Quality and the Valuation of New Issues,”
Journal of Accounting and Economics 8, 159–172.

Zwiebel, J. (1995), “Corporate Conservatism and Relative Compensation,” Journal of Political
Economy 103, 1–25.


	1. Introduction
	2. Related Literature
	3. The Model
	3.1. Baseline Model
	3.2. Equilibrium

	4. Preliminary Remarks on Retention Regimes
	4.1. Trivial Retention Regimes
	4.2. Monotone Retention Regimes
	4.3. Non-Monotone Retention Regimes

	5. Monotone Retention is (Almost) Never an Equilibrium
	6. Bounded Retention and Replacement Regimes
	6.1. Two Possible Regimes
	6.2. Equilibrium Conditions
	6.3. Bounded Retention and the Type-Specific Choice of Noise
	6.4. Existence of Equilibrium With Bounded Retention
	6.5. Non-Existence of Bounded Replacement Equilibrium for Moderate 

	7. Extensions
	7.1. Non-Normal Signal Structures
	7.2. Multiple Types
	7.3. Multiple Agents
	7.4. Mean-Shifting Effort
	7.5. A Variant With Costless Noise
	7.6. Dynamics With Term Limits
	7.7. A Remark on Commitment
	7.8. Two Related Formulations

	8. Applications
	8.1. Risky Portfolio Managers
	8.2. Fundraising
	8.3. Risky Politics

	9. Summary
	Appendix: Some Proofs and Missing Details
	References

