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Abstract

While structural labor supply methods have many advantages, many recent papers
cite papers by MaCurdy and co-authors as a justification for avoiding structural meth-
ods, and instead using simple estimation methods such as differences in differences.
This paper examines the role of economic assumptions in structural labor supply meth-
ods and how some of the assumptions may be relaxed. We first show the sources of
inconsistency in the local linearization method. We then examine the standard ap-
proach generally attributed to Hausman, and show that this approach relies on the
convexity of preferences in the construction of the likelihood function. We show that
the criticisms of MaCurdy can be reinterpreted as showing where in the estimation
method the assumption of convexity is enforced. We provide a formal argument that
if observed preferences are nonconvex, but the estimation method does not allow for
nonconvexity, then estimated parameters may not satisfy the Slutsky restrictions, as
has often been found in empirical work. Our Monte Carlo experiments show that
this rejection is likely. Other experiments also show the importance of assumption
regarding functional form, the stochastic specification, and the hours endowment. Fi-
nally, we show that the standard methods in the literature do not permit estimation
of parameters consistent with nonconvex preferences, and describe methods that allow
for less restrictive assumptions.



1 Introduction

The effect of taxation on labor supply is of key interest to both policy makers and economists.
Labor supply responses to income taxes, and the taxes implicit in social insurance and welfare
programs, determine the effects of these policies on incomes, revenues, welfare and budgetary
costs. In these contexts, structural methods, though controversial, are advantageous in many
cases. Structural methods are often needed to separate out income and substitution effects
and calculate deadweight losses. Such methods are also well-suited to simulate the effects of
many potential changes in tax and transfer policies that change budget sets in complicated
ways.
As is well known, when the tax schedule is nonlinear in income, estimation of labor supply

parameters is difficult. In such a case, an individual’s marginal tax rate, and hence their
after tax wage rate, is not exogenous, but rather is a function of an individual’s hours of
work. This endogeneity of the after tax wage rate has led to the development of several
methods to estimate labor supply parameters.
Prior to the 1980s, the prevailing method, which will be referred to as local linearization,

was to create a linear budget constraint tangent to the actual budget constraint at the level
of hours at which an individual was observed. Individuals’ hours of work were then regressed
on the wage and nonlabor income associated with their respective budget constraints, with
instrumental variables often used to attempt to correct for the endogeneity of the wage and
income measures in this regression.1

Beginning with Burtless and Hausman (1978), and continuing with Hausman (1979, 1980,
1981, 1985a), a method was proposed which explicitly took account of the entire budget con-
straint generated by a nonproportional tax system, and estimated labor supply parameters
using maximum likelihood techniques. The introduction of this method stimulated an out-
pouring of empirical research on labor supply using some variant of this approach.2

In the 1990s, however, two papers sharply changed researchers views of the usefulness of
the Hausman method.3 In MaCurdy et al. (1990) and MaCurdy (1992), it was shown that
the likelihood function employed by the Hausman method implicitly enforced that estimated
parameters imply a positive Slutsky term at budget set kink points. These papers, jointly
referred to as the MaCurdy critique, argued that, in order for parameters to satisfy Slutsky
positivity at all kinks in the data, the uncompensated substitution effect was essentially
constrained to be positive, and the income effect was essentially constrained to be negative
(MaCurdy, 1992). It is further argued that ”[these] constraints arise not as a consequence
of economic theory, but instead as a requirement to create a properly defined statistical
model.” (MaCurdy, Green and Paarsch, 1990)
Because of the apparent restrictions on parameters in the Hausman method, the results

in MaCurdy et al. (1990) and MaCurdy (1992) have led several researchers to avoid using
sophisticated techniques that explicitly take into account the budget constraint generated by

1See Pencavel (1986) for a survey of studies that use local linearization methods.
2For surveys of these studies, see Hausman (1986) and Blundell and MaCurdy (1999).
3Of course, MaCurdy et al. (1990) and MaCurdy (1992) were not the only criticisms of the Hausman

method. See, for example, Heckman (1982) and Pencavel (1986) for other critiques of the usefullness of the
Hausman method.
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tax and transfer policies, in favor of simpler methods, like difference in differences estimators.4

However, since policy changes are rarely of the form that would enable us to separately
identify income and substitution effects, in using such techniques to estimate labor supply,
the ability to do some of the most important policy evaluations and simulations is sacrificed.
In this paper, we discuss the various methods that have been used to estimate structural

labor supply parameters. We clarify some past results, and provide new results on where
economic assumptions, in particular, convexity of preferences, enter into the different meth-
ods. We show how the incorrect imposition of these assumptions may have led to some of
the puzzling empirical results in the literature, and describe ways in which they might be
relaxed in practice.5

We first show that in plausible circumstances, local linearization will generally yield
inconsistent estimates, even when instrumental variables are used. Although this point
has been mentioned in the literature,6 it has not been shown formally, and is not well
understood.
We then develop several results new to the literature on the relationship between the

economic assumptions made in the derivation of estimation methods, the parameters that
may result, and the interpretation of such parameters. We outline the assumptions that
are implicit in the Hausman method, including convexity of preferences, and review the
restrictions these assumptions imply about parameters of the labor supply function. We
then describe the MaCurdy critique, and show that the MaCurdy critique pointed out where
in the Hausman method the assumption of convexity was enforced.
We further show that several generalizations of the Hausman method that have been

proposed only increase the parameter space to include parameters inconsistent with utility
maximization altogether. However, we provide an argument which shows that if data
generating preferences are actually nonconvex, then making the assumption of convexity may
result in estimated parameters that are inconsistent, or constrained to be consistent, with
utility maximization, a pattern that has often been found. We also provide a numerical
example that demonstrates this claim. As a result, before relaxing the assumption that
individuals maximize utility, as others have done, it makes sense to first relax the much
stronger assumption that preferences are convex.
Finally, we explore the ability of various estimation methods to allow for the relaxation of

the assumption that preferences are convex. We show that local linearization, the Hausman
method, the MaCurdy method, and even some nonparametric methods cannot be modified
to allow for the estimation of parameters consistent with nonconvex preferences. We then
describe a method that involves the estimation of a direct utility function, which avoids
making some of the assumptions in the aforementioned methods, and which can be used to

4See, for example, Blundell, Duncan and Meghir (1998), Fortin and Lacroix (1994), Eissa (1995) and
others.

5A few caveats must be mentioned. This research, like the other papers in this literature, is strictly a
partial equilibrium analysis of labor market behavior using a static model of labor supply to infer preference
parameters. As such, we ignore lifecycle considerations, the preferences of employers as to the number
of hours worked, imperfect perception of tax rules, and constraints on hours that individuals may work.
However, since estimation methods with those extensions often use this static model as a foundation, the
problems addressed in this paper are also likely to be important considerations in those settings.

6See, for example, passing references in Moffitt (1990, p. 136) and Ericson and Flood (1996, p. 434).
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Figure 1: Nonlinear Budget Constraint

estimate parameters consistent with nonconvex preferences. Lastly, we present Monte Carlo
evidence on the performance of this method relative to that of the Hausman method in a
variety of settings.
This paper proceeds as follows. In Section 2, we review the local linearization method

and show conditions under which commonly used instruments are invalid. In Section 3, we
describe the assumptions implicit in the Hausman method and show how these assumptions
imply that the labor supply function satisfies Slutsky positivity. We also clarify the MaCurdy
critique, and show how it may be reinterpreted as showing where the assumption of convex
preferences was enforced on estimated parameters by requiring that Slutsky positivity hold.
In Section 4, we provide an argument and a numerical simulation which show that data
consistent with nonconvex preference maximization might lead to parameters that violate
Slutsky positivity, and hence be inconsistent with utility maximization. In Section 5, we
demonstrate the unadaptability of commonly used methods to the estimation of parameters
consistent with nonconvex preferences. In Section 6, we construct an estimation method
that allows estimated preferences to be nonconvex. In Section 7, we perform Monte Carlo
experiments comparing the performance of this method to that of the Hausman method.
These Monte Carlo experiments show that this method improves on the performance of the
Hausman method in some cases, and show the importance of functional form, stochastic,
and hours endowment specifications when employing either method. Section 8 concludes.

2 The Inconsistency of Local Linearization

In order to understand the controversy surrounding the Hausman method, it is useful to
understand the method that preceded it, local linearization.
Consider the piecewise linear budget constraint in Figure 1. In the tax system illustrated
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in this figure, there are three tax brackets, with tax rates {t1, t2, t3}. The tax rate on labor
income between hours of work Hj−1 and Hj is tj, and so the after tax wage rate over this
segment of the budget constraint is wj = W (1 − tj), where W is the exogenous before tax
wage rate.7 If segment j is extended to the vertical axis, the intercept of this extended
segment at 0 hours of work is referred to as virtual income, and is denoted yj. Denote this
budget constraint as B({w1, ..., wJ}, {y1, ..., yJ}, h)
Suppose that for a given individual, i, utility over consumption and hours of work,

U(C, h), is maximized on the piecewise linear budget constraint at h∗, whereHj < h∗ < Hj+1.
As was noted in Hall (1973), if the individual has convex preferences and the budget con-
straint is convex, then utility would be maximized at the same level of hours if the budget
constraint were C ≤ wjh+ yj.
The local linearization method exploits this fact, and uses the after-tax wage wj and

virtual income yj from the segment of the budget constraint on which the individual is
observed as the key explanatory variables in a regression. Letting this segment be denoted
j0, the regression is of the form

h = f(wj0 , yj0) + u. (1)

where the subscripts for individual i are suppressed to reduce unnecessary clutter. So, for
each individual, one identifies the hours at which the individual is observed working, and
the after tax wage and virtual income associated with this level of hours. Hours of work are
then regressed on these wage and income measures. For example, Hall (1973) uses a variant
of this approach in his heavily cited paper.
However, estimating such an equation by ordinary least squares ignores a serious reverse

causality problem, in that the after-tax wage and virtual incomes included in the equation
are determined by the number of hours that an individual works. Individuals with a greater
taste for work will tend to work more hours, which, in the case of a progressive income tax
system, will lead to a lower net wage and higher virtual income being imputed for these
individuals. Thus, the error term in (1) will be correlated with the wage and virtual
income variables.8 As a result, several researchers have used instrumental variables (IV) to
correct for this reverse causality.9 Usually, the instruments used are the wage and nonlabor
income associated with the budget segment at a given level of hours in all individuals budget
constraints10, but demographic characteristics have also been used11.
There are several problems with the use of local linearization to estimate labor supply

equations, however, even when instrumental variables are used. First, note that the above
discussion ignores individuals that are observed at a kink point. If an individual is observed

7Note that throughout this paper, we assume that an individual’s gross wage is exogenous, and hence
invariant to both the number of hours the individuals works and the individual’s taste for work.

8See Moffitt (1990) for a discussion of local linearization and the rationale behind using IV in this setting.
9Note that the above discussion assumes that an individual’s before tax wage is exogenous, and so it is

the unobserved taste for work that creates the endogeneity of the right hand side variables in the estimation
equation.
Of course, there are other reasons why the right hand side variables could be endogenous, in that an

individual’s gross wage could be a function of the hours they work. This is not the problem that instrumental
variables, in this setting, is meant to correct for, and so this discussion does not take this possibility into
account.
10See, for example, Rosen (1976) and Hausman and Wise (1976).
11See, for example, Flood and MaCurdy (1993).
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at a kink point, it is unclear what net wage and virtual income should be imputed for that
observation. Second, the approach generally ignores the participation decision, and focuses
solely on marginal changes in hours. In some settings, for example when studying the labor
supply behavior of adult males, this may not be a bad approximation. For other groups,
such as married women, this would clearly be undesirable.
Finally, and most fundamentally, the nature of the problem makes seemingly plausible

instruments invalid when hours are measured with error, which is likely the case. There
are passing references to this point in the literature, for example in Moffitt (1990) and
Ericson and Flood (1996), but it has not been shown formally. Since this point is not well
understood, and since some recent papers have argued for a return to local linearization
techniques12, we formally demonstrate the inconsistency of local linearization here.
For IV to be consistent, the instruments used must be correlated with the regressors,

but uncorrelated with the error term. However, the error term in this specification will
generally be a function of preference parameters, and wage and income variables associated
with various budget segments, making it correlated with variables that might otherwise seem
like suitable instruments.
To demonstrate this point, note that the individual’s utility maximization problem is

maxU(C, h, v)

s.t. C ≤ B({w1, ..., wJ}, {y1, ..., yJ}, h), (2)

where the unobserved value of leisure for a given individual is denoted as v, in which a higher
value of v denotes a greater taste for work. In the absence of measurement error, we would
observe

h = h({w1, ..., wJ}, {y1, ..., yJ}, v). (3)

In order to break this function out into separate terms, suppose that f(wj, yj) + v is the
solution to

maxU(C, h, v)

s.t. C ≤ wjh+ yj. (4)

In this case, h(·) may be rewritten as
h({w1, ..., wJ}, {y1, ..., yJ}, v)

=
X
j

[f(wj, yj) + v] 1 (Hj−1 < f(wj, yj) + v < Hj) , (5)

where 1(·) denotes the indicator function. This form of the labor supply function takes
account of the fact that, as noted above, if the individual is observed between Hj−1 and
Hj, it must be that f(wj, yj) + v is also between those points. Letting j∗ be such that
Hj∗−1 < f (wj∗, yj∗) + v < Hj∗, so that j∗ is the segment of the budget constraint on which
utility is maximized, in the absence of measurement error, we would observe

h = f(wj∗ , yj∗) + v. (6)

12See, for example, Blundell and MaCurdy (1999).
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On the other hand, if hours observations are contaminated by measurement, ε, we observe

h = f(wj∗, yj∗) + v + ε. (7)

Now, let jobs be defined as Hjobs−1 < h ≤ Hjobs , so that using local linearization, we
would impute the after tax wage and nonlabor income associated with segment jobs of the
budget constraint. Suppose, then, that we use local linearization methods to estimate

h = f(wjobs , yjobs) + u. (8)

For IV to be consistent, the instruments must be uncorrelated with u. To examine under
which cases this might be so, consider the constituent parts of this error term.
As a point of reference, consider the choice of an individual in the absence of heterogeneity

in preferences, where v = 0. In this case, the individual would choose to work hours
f (wj0 , yj0), where Hj0−1 ≤ f (wj0 , yj0) ≤ Hj0.
Suppose, then, there is heterogeneity in tastes for work, but no measurement error. For

a sufficiently large v in absolute value, the individual’s utility maximizing segment will be
different from that of an individual with v = 0, and the larger is the value of v on the
real line, the larger is j∗. Nevertheless, the individual would be observed on the utility
maximizing segment, and so jobs = j∗. As a result, the estimated equation is the form

h = f (wj∗, yj∗) + u, (9)

which can be rewritten as

h = f (wj0 + (wj∗ − wj0) , yj0 + (yj∗ − yj0)) + u. (10)

where the error term u is of the form
u = v. (11)

In this case, taste for work will be correlated with (wj∗ − wj0) and (yj∗ − yj0). For example,
under a progressive tax system, a higher value of v implies that (wj∗ − wj0) will be more
negative and (yj∗ − yj0) will be more positive. As a result,

corr ((wj∗ − wj0) , v) < 0, corr ((yj∗ − yj0) , v) > 0,

which implies
corr ((wj∗ − wj0) , u) < 0, corr ((yj∗ − yj0) , u) > 0. (12)

This is the standard rationale invoked when using instrumental variables. For individuals
with greater tastes for work, we will impute a smaller wj∗ and larger yj∗ , and so the error
term will be correlated with the regressors.
Suppose we use the gross wage, W , and gross nonlabor income, Y , as instruments.

Clearly, these instruments would be correlated with wj∗ and yj∗. In addition, although
it will generally be the case that E [v|W,Y,wj∗, yj∗] 6= 013, under the assumption that v is
distributed independently of W and Y , it will also be the case that E [v|W,Y ] = 0 which
implies E [u|W,Y ] = 0. Hence, so long as the taste for work is distributed independently of
the gross wages and nonlabor incomes, these instruments will be valid.
However, hours of work are likely measured with error.14 In this case, for a sufficiently

13In other words, given that desired hours were on a segment with slope wj∗ and intercept yj∗ , the values
of W and Y tell us about the range from which v was drawn, and the expectation of v in this range is not
necessarily 0.
14See Bound et al. (1994) for evidence on the extent to which hours of work are measured with error.
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large ε, an individual will be observed on a segment, j00, which is different from the utility
maximizing segment. In this case, jobs = j

00
, and the estimated equation is

h = f (wj00 , yj00) + u, (13)

which can be rewritten as

h = f (wj0 + (wj∗ − wj0) + (wj00 − wj∗) , yj0 + (yj∗ − yj0) + (yj00 − yj∗)) + u, (14)

The error term, however, is now

u = [f (wj∗, yj∗)− f(wj00 , yj00)] + v + ε. (15)

Again, the taste for work will be correlated with (wj∗ − wj0) and (yj∗ − yj0). In addition, in
this case, measurement error will be correlated with (wj00 − wj∗) and (yj00 − yj∗).
Consider again the use of gross wage and nonlabor income as instruments. Again,

these instruments will be correlated with wj00 and yj00. However, these instruments will
now generally be correlated with the error term. The reasoning is as follows. Suppose that
individuals with higher gross wages tended to have smaller sets of hours within which the after
tax wage is the same.15 Since the distribution of ε is the same for all individuals, high wage
individuals’ observed hours will correspond to a segment other than their utility maximizing
segment at a greater rate. Since it will generally be the case that f (wk, yk) 6= f (wl, yl)
for k 6= l, then [f (wj∗ , yj∗)− f(wj00 , yj00)|j00 > j∗] will generally be different in absolute value
from [f (wj∗, yj∗)− f(wj00 , yj00)|j00 < j∗]. Hence, the greater prevalence of j00 6= j∗ for higher
wage individuals implies that [f (wj∗ , yj∗)− f(wj00 , yj00)] will vary systematically with the
gross wage, and so E [[f (wj∗, yj∗)− f(wj00 , yj00)] |W ] 6= 0 in general. A similar argument
would apply if the tax brackets tended to get bigger or smaller as income increased, in which
case it would generally be that E [[f (wj∗ , yj∗)− f(wj00 , yj00)] |Y ] 6= 0. As a result, it will
generally be the case that E [u|W,Y ] 6= 0. Hence, such instruments would be invalid, and
estimates resulting from such an approach will be inconsistent.
Further, other instruments that have been proposed, including the net wage and virtual

income at a fixed point in the budget constraint, or demographic variables, are probably
correlated with the gross wage and nonlabor income variables. Hence, these instruments
are likely correlated with the error term by the same argument above, and they too are
generally invalid.
Thus, in addition to the other problems with local linearization, even in its more so-

phisticated implementations, local linearization will likely lead to biased and inconsistent
estimates. This feature will often make local linearization methods undesirable to use in
labor supply estimation.

3 The Hausman Method and the MaCurdy Critique

Unlike local linearization, the Hausman method explicitly controls for the endogeneity of
after tax wage rate and virtual income to the number of hours worked, and takes account of
15This would be the case, for example, in a tax system like that in the U.S. in which the marginal tax

rate is tj on net income, Wh − Y − D, between Ij−1and Ij , so that Hj =
Ij−(Y−D)

W . In this case, since
Hj+1 −Hj =

Ij+1−Ij
W , the width of each tax bracket on the hours axis is decreasing in W .
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the possibility that an individual’s observed hours are not their utility maximizing hours. In
this section, then, we discuss the derivation of the Hausman method likelihood function, and
review the consumer theory relevant to the assumptions made in the derivation of the likeli-
hood. Given these results from consumer theory, we argue that, in constraining parameters
to satisfy Slutsky positivity (as was noted in MaCurdy et al. (1992) and MaCurdy (1990),
and which we discuss here), the Hausman method constrained parameters to be consistent
with the maximization of convex preferences, an assumption already made in the derivation
of the likelihood. Further, these results from consumer theory imply that several attempts
to modify the Hausman method amounted to generalizing the Hausman method to allow
estimated parameters to be inconsistent with utility maximization altogether. We argue
that other assumptions should be weakened before abandoning utility maximization, and
suggest such an assumption in the next section.

3.1 Derivation of the Hausman Method

The stochastic elements in the Hausman method are posited to consist of two components,
a term capturing unobserved heterogeneity in tastes for work, and a measurement error
term16. The derivation of the likelihood function then exploits the fact that, if preferences
are convex, there exists a simple algorithm that identifies the optimal hours of work, given
the values of the parameters and the heterogeneity term. Observed hours differ from these
optimal hours by the measurement error term.
The algorithm that identifies the optimal hours of work on the budget constraint is

important for the discussion that follows, and so it is repeated here. Suppose the budget
constraint is as in Figure 1. Let v denote an unobserved component in preferences, and
let hj = h(wj, yj, v) be the optimal labor supply if an individual with heterogeneity, v, were
maximizing utility over consumption and hours of work, U(C, h, v), subject to the budget
constraint defined by C = wjh+ yj.
If preferences are convex, then the following algorithm (using the notation in MaCurdy

(1992)) identifies desired hours, h∗, on the piecewise linear budget set.

h∗ =



H0 if h1 ≤ H0 (lower limit)
h(w1, y1, v) if H0 < h1 < H1 (segment 1)

H1 if h1 ≥ H1 and h2 ≤ H1 (kink 1)
h(w2, y2, v) if H1 < h2 < H2 (segment 2)

H2 if h2 ≥ H2 and h3 ≤ H2 (kink 2)
h(w3, y3, v) if H2 < h3 < H3 (segment 3)

H3 if h3 ≥ H3 (upper limit)

(16)

Later, in Section 5.1, we discuss the necessity of the assumption that preferences are convex
for the Hausman method to be properly specified, in that this algorithm will be certain to
identify desired hours only if preferences are convex. Although convexity of preferences

16The second term has also been interpreted as a optimization error term. The distinction does not matter
here, but does if one is using a wage measure defined as total earnings divided by hours. In this latter case,
the hours error contaminates the wage measure, and so the budget constraint is measured with error. This
is not an insurmountable problem, as the maximum likelihood procedure could be augmented to deal with
this problem. However, few (if any) researchers have attempted to make this correction.
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is mentioned in some of the Hausman method papers,17 the implications of the approach’s
fundamental reliance on the assumption is not discussed. However, if preferences are indeed
convex, the following derivation of the likelihood follows.
Observed hours are assumed to be hi = h∗ + εi, where εi denotes measurement error.18

The likelihood of observing individual i, then, is:

P (hi) = P

·
h(w1, y1, vi) ≤ H0,

hi = H0 + εi

¸ Optimal hours
below H0,

observed at hi

+
P3

j=1 P

·
Hj−1 < h(wj, yj, vi) < Hj,
hi = h(wj, yj, vi) + εi

¸ Optimal hours
at h(wj, yj, vi),
observed at hi

+
P2

j=1 P

 h(wj, yj, vi) ≥ Hj,
h(wj+1, yj+1, vi) ≤ Hj,
hi = h(wj, yj, vi) + εi

 Optimal hours
at Hj,

observed at hi

+P

·
h(w3, y3, vi) ≥ H3,
hi = H3 + εi

¸ Optimal hours
above H3,

observed at hi

(17)

A popular specification for the hours of work function has been the linear labor supply
function, where h(wj, yj, v) = c + αwj + βyj + v. For ease of exposition, this form will be
assumed in the discussion that follows, though the key results are generalized to an arbitrary
differentiable labor supply function in Appendix A.

3.2 Consumer Theory Related to the Hausman Method and the
MaCurdy Critique

In order to understand the MaCurdy critique, it is useful to recall the consumer theory that
applies to the critique. In Hurwicz and Uzawa (1971), several theorems on the relationship
between maximization of utility subject to a linear budget constraint and the properties of
the demand function are proven. For convenience, they are adapted here to the setting of
labor supply choice.

Theorem 1 Let preferences over consumption, C, and hours of work, h, be complete and
transitive, and let h(w, y) be the solution to the maximization of these preferences subject to
C ≤ wh + y. If C = wh(w, y) + y, and h(w, y) is single valued and differentiable, then the
Slutsky substitution term associated with h(w, y), ∂h

∂w
− ∂h

∂y
h, is positive.

Proof. See Hurwicz and Uzawa (1971), p. 119-123

17For example, see Hausman (1979, p. 172) and Hausman (1985a, p.1257). Burtless and Hausman (1978)
and Hausman (1981) appear to make no mention about the required form of preferences.
18This is somewhat of a simplification, in that there are often separate conditions under which an individual

is observed working 0 hours. These conditions are not important for the discussion that follows, however,
and are left out for the sake of clarity.
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The above theorem states that, under certain conditions, any labor supply function gener-
ated by maximizing complete and transitive preferences subject to a linear budget constraint
will have a positive Slutsky term when evaluated at any hours that could be the utility max-
imizing choice.19 Since applications of the Hausman method, along with other methods,
invariably assumed a single valued and differentiable labor supply function, for the result-
ing parameters to be consistent with the assumption of convex preference maximization (or
the maximization of any preferences, for that matter), they would need to satisfy Slutsky
positivity by Theorem 1.
The next theorem, and the following corollary, show that under certain conditions, if

the Slutsky term of a labor supply function is positive, then there exists a utility function
representing convex preferences that, when maximized subject to a linear budget constraint,
will generate the labor supply function.

Theorem 2 Let h(w, y) be single valued and differentiable with bounded derivatives, and let
C = wh(w, y) + y. If the Slutsky substitution term associated with h(w, y), ∂h

∂w
− ∂h

∂y
h, is

positive, then ∃ U(C, h) s.t. h(w, y) is the solution to

maxU(C, h) (18)

s.t. C ≤ wh+ y

Proof. See Hurwicz and Uzawa (1971), p. 124-130.

Corollary 1 Under the same assumptions as in Theorem 2, U(C, h) is quasiconcave.

Proof. See Hurwicz and Uzawa (1971), p. 131.
Again, recall that the Hausman estimation method involves the estimation of a single

valued and differentiable labor supply function. Thus, if the estimated parameters satisfy
Slutsky positivity, then they are consistent with the maximization of convex preferences.

3.3 The MaCurdy Critique

In two papers, MaCurdy et al. (1990) and MaCurdy (1992), argue that the Hausman
method imposes that estimated parameters satisfy Slutsky positivity. The reason for this
restriction is straightforward. MaCurdy et al. show that in order for all probabilities in
the likelihood function to be nonnegative20, for each kink point observed in an individuals
budget constraint, the level of hours at which that kink point is located must have a positive
probability of being the individual’s desired hours.21 Referring back to the third line of (17),
this implies that if this probability is positive, which is guaranteed if v has a sufficiently large
continuous support, there must be some nonempty set, Vj, of unobservable heterogeneity, v,

19Although the Slutsky term is negative in the case of a consumption bundle choice subject to a linear
budget constraint, in the case of labor supply decisions the analogous expression is positive. Hence, in this
paper, the condition usually referrred to as Slutsky negativity is denoted as Slutsky positivity.
20Coherency of the likelihood function also requires that probabilities not exceed 1 and that the union of

all events has probability 1. It is the nonnegativity restriction, however, that is the focus of MaCurdy et al.
21For a dissent to this critique, see Blomquist (1995).
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for which h(wj, yj, v) ≥ Hj and h(wj+1, yj+1, v) ≤ Hj.22 Using the functional form for the
labor supply function assumed above23, these conditions imply that, for v ∈ Vj,

c+ αwj + βyj + v ≥ c+ αwj+1 + βyj+1 + v (19)

Using that yj+1 = yj + (wj − wj+1)Hj,24 (19) can be rewritten to yield

α− βHj ≥ 0 (20)

Of course, (20) is just the Slutsky compensated wage effect consistent with a linear labor
supply function, ∂h

∂w
− ∂h

∂y
h, evaluated at the kink point, Hj. Since the likelihood function

is undefined when this restriction is violated, all estimates of α and β must satisfy this
restriction.
MaCurdy et al. note that there are a number of kinks in each individual’s budget con-

straint, and that the location of these kinks differ across individuals. Hence, the condition
above, they argue, amounts to requiring that the parameters are such that Slutsky positivity
is enforced globally, which in the linear labor supply case amounts to constraining α > 0 and
β < 0. It is posited in MaCurdy (1992) that such a constraint is a likely explanation for the
consistently larger elasticities that were estimated when the Hausman method was used.
However, given the results of Theorems 2 and Corollary 1 above, however, constraining

parameters to globally satisfy Slutsky positivity amounts to constraining those parameters
to be consistent with the maximization of globally convex preferences. Further, recall
that it is assumed in the derivation of the Hausman likelihood function that individuals are
maximizing preferences that are globally convex.25 Hence, the MaCurdy critique essentially
points out where in the Hausman likelihood function the assumption of convex preference
maximization is enforced on estimated parameters.

3.4 Relation to Findings in the Literature

Constraining estimates to be consistent with the maximization of globally convex preferences
is not necessarily undesirable. For example, if one strongly believes a priori that preferences
are convex, one may want to enforce this restriction in estimation. It is troubling, however,
if this constraint is found to be binding.
In fact, MaCurdy et al. (1990), as well as Blomquist and Hannson-Brusewitz (1990),

Colombino and Del Boca (1990), and Triest (1990) find that, when the Hausman method
is used, the statistical constraints are binding on the parameters of interest.26 Further,
22Formally, in the likelihood function, for the integral over the set of v such that the individual would

choose to work at a kink, the upper bound of the integral must be greater than or equal to the lower bound.
So, if this inequality is strict, there exists some v such that the condition stated in the text is true.
23Of course, the MaCurdy critique is not dependent on the functional form of the labor supply. MaCurdy

et al. (1990) contains a generalization of this point for any labor supply function, increasing in v, that
is derived from the maximization of a quasi-concave utility function. In Appendix A, we generalize the
argument used in this section to an arbitrary labor supply function.
24This equation follows from the definition of the virtual incomes. See MaCurdy (1992, p. 244) for

example.
25See Footnote 17.
26There is, however, some controversy as to why MaCurdy et. al. found the constraints to be binding in

their estimation. For example, in a recent paper, Eklöf and Sacklén (1999) argue that the wage measure
used in MaCurdy et al. is contaminated by division bias, which led to the nonnegativity constraint binding.
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MaCurdy et al. (1990) propose an estimation method which relaxes this restriction on the
Slutsky term, and find that estimates from this method violate Slutsky positivity.
The method in MaCurdy et al. incorporates the same underlying structural model, and

invokes the same assumption of convex preferences, but replaces the true budget constraint
with a twice differentiable approximation.27 In this method, all probabilities in the likelihood
function can be nonnegative even when parameters violate Slutsky positivity, as long as the
Slutsky term is not too negative. Since this likelihood function is still defined in some
cases in which the Slutsky term is negative, then, given Theorem 1 above, the estimated
labor supply function is allowed to be inconsistent with utility maximization, even over a
range of hours in which data are observed.28 As such, it allows estimated parameters to
be inconsistent with the assumptions that underlie the structural model and assumed data
generating process.
Using the same dataset that they used for their Hausman method estimation, MaCurdy

et al. then estimate labor supply parameters using their differentiable budget constraint
method, and find that the estimated parameters violated Slutsky positivity. Further, es-
timated parameters satisfied Slutsky positivity only when they were constrained to do so.
Hence, MaCurdy et al. use these results to argue that the Slutsky restriction implicit in the
Hausman method is a binding restriction in their data, and that parameter estimates from
the Hausman method satisfy Slutsky positivity only because they are constrained to do so.
The results in MaCurdy et al., then, demonstrate the presence of the constraint in the

Hausman method, and argue that it is binding in practice. However, this result leaves the
researcher in a quandary as to how to proceed. The MaCurdy method is really only a
generalization of the Hausman method in that it expands the parameter space over which
all probabilities are nonnegative to include parameters which are inconsistent with utility
maximization. Hence, if the MaCurdy method’s unconstrained estimates violate Slutsky
positivity, as was found, then they are not useful for welfare calculations and some policy
simulations, since they are inconsistent with utility maximizing behavior.
Blomquist and Hannson-Brusewitz (1990) argue that this problem may be rectified by

modifying the data generating process to one which is consistent with utility maximizing
behavior if Slutsky positivity is satisfied, and is consistent with some form of non-utility
maximizing behavior if Slutsky positivity is violated. They then argue that one can interpret
observations for which estimated parameters satisfy Slutsky positivity as resulting from the
maximization of convex preferences. However, for the portion of the sample for which
estimates violate Slutsky positivity, they don’t know what behavioral model corresponds to
their data generating process, once again rendering the estimates useless in welfare analyses
and some policy simulations.
It is important to emphasize, however, that the modifications to the Hausman method

27A weakness of the MaCurdy method is its requirement that the budget set be convex. Convexity of
the budget set is required to guarantee that there is a unique level of hours, h, that maximizes utility for
a given specification of heterogeneity of preferences, v. This, in turn, implies that the Implicit Function
Theorem may be applied to yield v as a function of h, which is then used in the estimation. Thus, if the
actual budget set is nonconvex, the MaCurdy method requires the creation of a convexified approximation
to the budget set.
28To see this, use the contrapositive of Theorem 3.1 above. If parameters violate Slutsky positivity, then

they are not consistent with utility maximization.
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suggested in the above papers only generalize the Hausman method by expanding the pa-
rameter space to include parameters which violate Slutsky positivity for some observed
individuals, and hence are inconsistent with utility maximization altogether. But, since
these papers do not address why the constraint in the Hausman method would be binding,
the estimation strategies proposed in these papers suggest modifications to the Hausman
method to fix a problem whose cause is not fully known. If there are other assumptions
that we may be more willing to drop than the assumption of utility maximization, and if the
imposition of these other assumptions may cause problems for the Hausman method, then
clearly the weakening of these assumptions should be tried first. In the following section,
we identify such an assumption.

4 Nonconvexities as a Possible Source of Problems

As noted in the previous section, the MaCurdy critique argues that the Hausman method
forces estimates to exhibit Slutsky positivity, and further argues that these restrictions are
binding. However, MaCurdy et al. do not have an explanation as to why the constraints
are found to be binding.
One possible explanation is offered in Eklöf and Sacklén (1999), who argue that in

MaCurdy et al.’s study, the hours variable is measured with error, and this error conta-
minates the wage measure, which is calculated by dividing annual earnings by annual hours.
They argue that this, in turn, biases the wage coefficient downward, which causes the Slutsky
constraint to be binding.29 Although this explanation may be consistent with MaCurdy et
al.’s finding that the wage coefficient had to be constrained to be positive to insure nonnega-
tive probabilities, it is inconsistent with results in other studies, such as Triest (1990), which
finds that the income coefficient had to be constrained to be negative to insure nonnegative
probabilities. Hence, this explanation is not fully satisfactory.
In this section, we argue for an alternative explanation of these results. Namely, we argue

that if the data are of a form consistent with individuals maximizing nonconvex preferences
subject to a nonlinear budget constraint, but one uses a method such as the Hausman method
or local linearization, which estimate the parameters of a labor supply function under the
assumption that preferences are convex, such a method may yield estimates which are either
constrained to satisfy Slutsky positivity, or which violate Slutsky positivity.
One should be clear at the outset that we are not arguing that if preferences are noncon-

vex, the Slutsky compensated wage effect is negative; on the contrary, even if preferences are
nonconvex, the compensated wage effect will have the usual sign. Rather, we are arguing
that data of a form consistent with nonconvex preference maximization may cause the afore-
mentioned methods to yield estimated parameters that either violate Slutsky positivity, and
hence wrongly exhibit negative compensated wage elasticities, or be constrained to satisfy
Slutsky positivity.

29In a Monte Carlo study of the robustness of the Hausman method to various forms of error, Blomquist
(1996) finds that a form of the Hausman method performs quite well when measurement error in the wage
rate is present. However, in these experiments, there is no spurious correlation between hours and wages in
the simulated data. The contaminated wage rate is used to construct the budget constraint, and used as
the wage rate in the estimation, but observed hours come from the uncontaminated data.

13



Figure 2: Budget Constraint with One Kink Point for Group g

We also hasten to note that we do not, in this paper, give a rationale as to why preferences
over consumption and hours of work might appear to be nonconvex. An argument as to
why data generating preferences in a structural labor supply model may be nonconvex, as
well as the effects of the source of the nonconvexity on identification and policy analyses,
are addressed in Heim and Meyer (2003).
With that in mind, the implication of the argument that we make in this section is that

assuming convexity of preferences, when false, can lead to estimates that violate the more
rudimentary assumption of utility maximization, even when this assumption is actually true.
As a result, before considering non-utility-maximizing generalizations of estimation methods,
one should allow for the possibility that preferences are nonconvex when estimating labor
supply parameters.

4.1 Model Assumptions

For simplicity, suppose all individuals face a budget constraint of the general type depicted
in Figure 2. Let a group of individuals who face the same budget constraint be indexed by g.
For individuals in group g, let the budget constraint consist of a kink at Hg. Let the slope
of this budget constraint be wg

1 over [H0,H
g], and wg

2 over [H
g, H]. Finally, let the virtual

income associated with the segment over [H0,H
g] be yg1 , and the virtual income associated

with the segment over [Hg, H] be yg2.
30 Let individual i who faces budget constraint g be

denoted (i, g), and let them be observed working hours hgi .
Let the labor supply equation that is being estimated be h(v) = c+αw+βy+v31, where

30This figure is identical to Figure 1 in MaCurdy (1992), with the exception that this figure only incorpo-
rates two tax brackets, whereas MaCurdy’s incorporates three.
31For a generalization of this argument to an arbitrary labor supply function, see Appendix A.
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c, α, and β are the parameters to be estimated, and v is the stochastic element. Suppose
that we used the following assumptions to infer parameters using the observed distribution
of data:

Assumption 1 : For (i, g) s.t. hgi < Hg,
it must be that

c+ αwg
1 + βyg1 + vgi < Hg.

(21)

Assumption 2 : For (i, g) s.t. hgi = Hg,
it must be that

c+ αwg
1 + βyg1 + vgi ≥ Hg

and c+ αwg
2 + βyg2 + vgi ≤ Hg.

(22)

Assumption 3 : For (i, g) s.t. hgi > Hg,
it must be that

c+ αwg
1 + βyg1 + vgi > Hg.

(23)

Assumption 4 : The distribution of vgi is continuous (24)

Note that these assumptions are implicit in the Hausman method when there is no measure-
ment error (See Equation (16) above), and that such assumptions, or variants thereof, are cor-
rect if individuals have convex preferences. In such a case, one can interpret c+αwg

1+βy
g
1+v

g
i

as the hours of work that the individual would choose on a linearized budget set tangent to
the segment below Hg, c + αwg

2 + βyg2 + vgi as the hours of work that the individual would
choose on a linearized budget set tangent to the segment above Hg, and use the algorithm
in Hausman (1979) to find the individual’s desired hours on the nonlinear budget constraint.
Suppose, then, that we attempted to infer parameters, c, α and β, and a distribution

for v, that satisfied Assumptions 1-4, given an observed distribution of data. Obviously,
an estimation method does not use such deductive logic to infer estimated parameters, but
the parameters obtained in such a thought experiment may be informative as to the type
of parameters that would result when using an estimation method that incorporates these
assumptions. In the following subsection, then, we examine the implications of these as-
sumptions when analyzing data generated by individuals maximizing nonconvex preferences.

4.2 Parameters if the Data are Consistent with Nonconvex Pref-
erence Maximization

Suppose that the data are such that for some budget constraints with kink points, Hg, we
observe a distribution of individuals working quantities of hours below the kink point, no
individuals working around the kink point, and a distribution of individuals working quan-
tities of hours above the kink point. Such data would be consistent with individuals having
nonconvex indifference curves of the general form depicted in Figure 3, and with heterogene-
ity in taste for work shifting those indifference curves so that some individuals would choose
to work below the kink point, and others above the kink point, but no individuals would
choose to work near the kink point.32

Suppose, then, that we used Assumption 1-4 to infer parameters c, α, β, and a distribution
for v from such data. To examine the type of parameters that would be consistent with these

32Note that if preferences were convex, instead of observing a gap around the kink point, we would expect
a mass point in the distribution of observed hours at the kink point.
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Figure 3: Nonconvex Preferences Maximized Subject to a Budget Constraint with One Kink
Point

assumptions, first note that since no individuals are observed at the kink, Assumption 2 does
not apply. For individuals working a number of hours hours less than H1, the parameters
would satisfy c+αw11+βy

1
1+v < H1 due to Assumption 1. For individuals observed working

a number of hours greater than H1, the parameters would satisfy c + αw12 + βy12 + v > H1

due to Assumption 3. Given Assumption 4, that the distribution of v is continuous, there
must be some individuals with the same v in both groups.33 Thus, both inequalities must be
satisfied for some v. As a result, the combination of these conditions implies that parameters
would satisfy

c+ αw11 + βy11 + v < c+ αw12 + βy12 + v. (25)

The inequality in (25) can be rewritten as

α(w11 − w12) < β(y12 − y11) (26)

which, again using y12 = y11 + (w
1
1 − w12)H

1, may be further rewritten as

α(w11 − w12) < β(w11 − w12)H
1. (27)

Since w11 > w12, parameters would satisfy

α− βH1 < 0. (28)

Thus, in data consistent with individuals maximizing nonconvex preferences, in which in-
dividuals are not observed working near a kink point, but are observed working on either
33Suppose there are no such individuals. Then there would be a v in between the highest v that satisfies

the first inequality and the lowest v that satisfies the second inequality. But, then we would observe such an
individual working a level of hours in the gap between the two groups, which we do not.
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side of it, parameters consistent with the assumptions would exhibit a negative Slutsky
compensated wage effect.
Of course, not all data arising from individuals maximizing nonconvex preferences on a

nonlinear budget constraint would be of the form described above. In those cases, parameters
consistent with the assumptions above may well satisfy Slutsky positivity.
However, if the data were of the form above, parameters inferred from the data using

Assumptions 1-4 would violate Slutsky positivity and, given Theorem 1, be inconsistent with
utility maximization. This result suggests the possibility that making the assumption that
preferences are convex, implying that behavior can be modelled using an algorithm such as
that in Assumptions 1-4, can have unfortunate effects on labor supply parameter estimates if
those assumptions are wrong. In particular, if such a method were used on data consistent
with nonconvex preference maximization, estimated parameters may be inconsistent with
utility maximization altogether, even though utility maximization was indeed what generated
the data. Since the assumptions that are described above are implicit in the Hausman
method, it is certainly possible that parameters estimated using the Hausman method on
such data would either violate (if the constraint wasn’t enforced), or be constrained to satisfy,
Slutsky positivity. A similar argument could be made for estimates coming from the use of
local linearization on such data.

4.3 A Numerical Simulation

In this subsection, we present a numerical simulation that illustrates the theoretical argu-
ment presented above, which claims that nonconvex data generating preferences can lead
the Hausman method to yield parameter estimates that are constrained to satisfy Slutsky
positivity.
To keep the numerical example as close as possible to the theoretical argument above,

we use a simplified tax system, in which all individuals have only one kink in their piecewise
linear budget constraint. As such, we use a tax system in which every individual takes a
standard deduction of $1000, and in which the tax rate is .2 on taxable income up to $11,500,
and .4 thereafter.
We then generate a simulated sample of individuals’ wages and incomes.34 The mean

gross hourly wage in the sample used in Hausman (1981) was approximately $6, and so
the wages in the simulated sample were drawn from a N(6, 1) distribution, truncated at
$0.35 The mean gross nonlabor income in the Hausman sample was approximately $1400,
and so the nonlabor incomes in the simulated sample were drawn from a N(1400, 250000)
distribution, again truncated at $0. With this sample, the mean individual has a kink point
at 1850 hours. Thus, individuals working full time hours would be at a level of hours above
the kink point, and individuals working around part time hours or below would be at a level
of hours below the kink point.
In order to empirically verify the above result, one must first have some specification for

utility for which indifference curves are nonconvex in such a way that there is a "dent" in

34The reason for simulating a sample, instead of using the data used in the Monte Carlo experiments that
are described in Section 7, is that that sample contains observations for which nonlabor income is above
$12,500, and so those individuals would have no kink points in their budget constraints.
35In the sample used, no observations required truncation.
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indifference curves, as is illustrated in Figure 3. Unfortunately, although many functional
forms have been used in the economics literature36, we could not find a utility function whose
indifference curves had the shape desired. Hence, a new functional form had to be developed
which has these properties.
To construct such a utility function, we augment a well known utility function, the

constant elasticity of substitution (CES) utility function, by replacing the leisure argument
with a (3,2) Pade function37 in hours. Namely, the functional form utilized is

U = (1− η)
¡
C − C − vi

¢ρ
+ η

µ
δ3h

3 + δ2h
2 + δ1h+ δ0

β2h
2 + β1h+ 1

¶ρ

(29)

where C denotes consumption, h denotes hours of work, η, ρ, C, δ3, δ2, β2, β1, δ1, and δ0
are preference parameters, and vi is a term representing unobserved heterogeneity in taste
for work.
Although this functional form seems complex at first blush, it does have a straightforward

theoretical interpretation. To understand this, note that the above utility function may be
rewritten in an equivalent form as

U = (1− η)
¡
C − C − vi

¢ρ
+ η

µ
H − h− γ1h−

α2h
2 + α1h+ α0

β2h
2 + β1h+ 1

¶ρ

(30)

Using the insights and terminology from the chapter that follows, then, it is easily seen
that this functional form is the functional form consistent with observable preferences for
an individual with standard CES preferences facing unobserved time costs of work that take
the form F2(h) = γ1h+

α2h2+α1h+α0
β2h

2+β1h+1
.

Depending on the parameterization of the (3,2) Pade function, this functional form can
represent standard CES preferences (if δ3 = δ2 = β2 = β1 = 0, δ1 = 1, and δ0 = H),
augmented CES preferences that are convex, or augmented CES preferences that are non-
convex. To see how this specification results in preferences that are nonconvex, and which
have "dented" indifference curves, consider the form in (30). In this form, subtracting the
ratio of two polynomials has the effect of taking the standard CES indifference curves and
stretching or compressing them along the hours axis, depending on the magnitude and sign
of the derivative of this ratio. Over the range of hours in which the ratio increases, the
standard CES indifference curves are compressed, and over the range of hours in which the
ratio decreases, the standard CES indifference curves are expanded.
Although the properties of this utility function can vary greatly depending on the para-

metrization, here we only note the properties of the parameterization used in the numerical
example. So, let α2 > 0, β2 > 0, α1 < 0, and β1 < 0. In this case, the numerator of the
ratio initially decreases, and then increases, and the denominator of the ratio does the same.
Thus, either the ratio increases, then decreases, then increases toward an asymptote, or the
ratio first decreases, then increases, then decreases, then increases toward the asymptote.
This results in indifference curves that are initially compressed along the hours axis, then

36See, for example, Stern (1986), who summarizes the properties of various functional forms that have
been used in labor supply estimation.
37A (p, q) Pade function consists of a ratio of a polynomial of degree p divided by a polynomial of degree

q.

18



Figure 4: Sample Indifference Curves for the Nonconvex Preferences Used in the Numerical
Simulation

expanded, then compressed in the first case, and expanded, then compressed, then expanded,
then compressed in the second.
The parameters used in the numerical example fall into this final case. They are η = .2,

ρ = .1, C = 4000, δ3 = −1.2x10−6, δ2 = .0068, δ1 = −12.7, δ0 = 8000, β2 = 5.9x10−7, and
β1 = −.0014. These indifference curves are depicted in Figure 4. These preferences are such
that, given the tax system described above, an individual with the mean wage and nonlabor
income could have desired hours either above or below the kink point, depending on their
draw of vi, but there exists a span of hours around the kink point in which the individual’s
desired hours could not fall. This condition is also true for many other individual’s observed
in the simulated data, and so these parameters capture the spirit of the argument presented
in preceding section.
To generate the data, we drew a value of vi for each simulated individual from a N(0, σ2v)

distribution, where σv = 4000, and a value of εi from aN(0, σ2ε) distribution, where σε = 250.
We then used a program written in Gauss 4.0 to maximize each simulated individual’s utility
function subject to their budget constraint, yielding each simulated individual’s desired
hours.38 A measurement error term was then added to each of the simulated individual’s
desired hours to yield their observed hours. The parameters above resulted in an hours
distribution with a degree of clumping around 2000 and 1000 hours, with about 90% of the
individuals in the data having their desired hours above the kink point. This is largely
due to the specification of C, in that a lower C (or a larger σv) yields a larger number of
individuals with desired and observed hours below the kink point. Nevertheless, the resulting
distribution of data is relatively realistic. Sample statistics from this hours distribution are

38To solve each individual’s utility maximization problem, we first use a grid search with nodes spaced out
by 10 hours to bracket the global optimum, and then use a bracketing algorithm (See Judd (1998), p. 95-6)
to identify the utility maximizing hours accurate to 4 decimal places.
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Table 1: Sample Statistics - Simulated Sample
Variable N Mean Std. Dev. Min. Max.

W 1074 6.0016 0.9698 2.0325 9.6721
Y 1074 1411.6 487.31 0 2926.9
H1 1074 1901.9 364.36 1176.5 5511.4

hours 1074 2197.9 551.68 0 3291.2

presented in Table 1.
We then read these simulated data into two Hausman estimation programs written in

Stata 7. The first program estimated the labor supply function consistent with the standard
CES utility function, which is of the form

h = H − y + wH − C − v

w + kwe
(31)

where e = 1
1−ρ and k =

³
1−η
η

´e
. Details of this estimation method, and the likelihood

function that it employs, are presented in the Appendix D.
The resulting parameter estimates are presented in the top panel of Table 2, where

it can be seen that the estimates in the Hausman estimation are bound by the Slutsky
constraint implicit in this method. To see this, note that in the CES specification, the
Slutsky constraint is of the form (we

2 − we
1)
¡
H1 −H

¢ ≥ 0. Since the estimate of ρ is less
than one, the estimate of e is greater than zero. This implies, since w2 < w1, that the
first term of the Slutsky constraint is negative. Hence, in order for the entire Slutsky term
to be positive, the second term must be negative, which implies that for all individuals,
H1 −H ≤ 0 =⇒ H ≥ H1. Since the largest H1 in the data is 5511.436, it is clear that the
estimate of H is being bound at its value so that the Slutsky constraint is satisfied.
In turn, the estimated parameters that are being bound at the constraint suffer from a

large bias. For the true parameters, the true uncompensated wage elasticity (evaluated at a
wage of $3.60 and nonlabor income of $3540, which corresponds to the second segment of the
mean individual’s budget constraint) is .0054, and the income elasticity is −.0458.39 For the
estimated parameters that were bound to satisfy Slutsky positivity, however, the estimated
uncompensated wage elasticity was .6751, and the estimated income elasticity was −.1081.
Thus, this constraint has the effect of biasing both the uncompensated wage elasticity and
the income elasticity upwards in absolute value.
To further illustrate this point, we also applied the Hausman method, using a linear labor

supply function. The results from this exercise are presented in the bottom panel of Table
2. Again, the estimated parameters are bound by the Slutsky constraint. To see this, recall
that, in order for the Slutsky constraint to be satisfied in this specification, it must be that
α − βH1 ≥ 0 for all individuals. Note that, for H1 = 5511.44, which is the largest kink
point observed in this simulated data, bα− bβH1

∼= 0. Hence, the estimated parameters are
again bound by the Slutsky constraint, since if bα were any less positive, or bβ were any more
39Since these nonconvex preferences do not yield a closed form expression for the labor supply function,

these elasticities were calculated numerically by maximizing these preferences subject to several budget
constraints, and then using a finite difference method.
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Table 2: Numerical Example of Nonconvex Data Generating Preferences Resulting in Slutksy
Constraint Binding: Estimation Results

CES Utility Specification

Variable Coeff. Std. Error
H 5511.44 0.00
c -3107.28 —
ρ -0.42 0.19
η 0.09 0.04
σv 8.55 0.13
σε 6.22 0.04
N 1074

Log likelihood -8142.39

Linear Labor Supply Specification

Variable Coeff. Std. Err.
c 1404.78 177.71
α 179.94 45.64
β 0.033 0.00
σv 160.84 1.54
σε 540.12 1.04
N 1074

Log likelihood -8145.36
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positive, the Slutsky constraint would not be satisfied for at least one individual observed
in the simulated data. The estimated parameters imply an uncompensated wage elasticity
of .2987 and an income elasticity of .0532. Thus, these nonconvex preferences generating
the data resulted in estimates of both the wage and income effects that are positive, and
hence the uncompensated wage and income elasticities are also positive. Interestingly, this
pattern of results, with the estimated income effect being positive and bound to satisfy
Slutsky positivity, is something that, as noted above, has been found in the literature (see
e.g. Triest (1990)), but for which no explanation has previously been offered.
We have done some robustness testing to examine whether this result is an aberration,

or whether this example is one of a larger set nonconvex preferences that cause the Slutsky
constraint to bind in either the CES or linear labor supply specification when using the
Hausman method. The results of these experiments suggest that the latter is the case. It
turns out that there are other values for the β0s and δ0s that represent nonconvex preferences
which, when data are generated in the above described manner, cause the Slutsky constraint
to bind. We have evaluated the generality of this result to different measurement error spec-
ifications. In general, lower amounts of measurement error also cause the Slutsky constraint
to bind, but a sufficiently large amount will result in parameters that are not binding. We
have also examined the robustness of this result to different values of σv. Some specifications
resulted in the Slutsky constraint binding, and others did not. A necessary condition for the
Slutsky constraint to be binding seems to be that the spread of heterogeneity is sufficiently
large such that individuals are observed on both sides of the kink point (which would be
expected, given the theoretical argument above), but beyond that, there does not seem to
be any clear pattern of requirements.

4.4 Implications of Theoretical Argument and Numerical Simula-
tion

In the previous subsections, we argued, both theoretically and with the use of a numerical
simulation, that data generated by the maximization of nonconvex preferences can cause the
Hausman method to estimate parameters that are constrained to be consistent with Slutsky
positivity. Further, in practice, several studies have estimated parameters which violated
or were constrained to satisfy Slutsky positivity. Therefore, given the results above, before
allowing for the violation of utility maximization in labor supply estimation, as was done
in MaCurdy et al. and Blomquist and Hannson-Brusewitz, it seems preferable to instead
use an estimation method that does not require the assumption that preferences are convex
in its construction, and which allows for the estimation of parameters of both convex and
nonconvex preferences.
In the next section, however, we show that the commonly used methods, and further any

method that relies on a result by Hall (1973) to estimate the parameters of a labor supply
function, cannot be adapted for such a purpose, and so other methods must be employed.
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5 Unadaptability of Local Linearization, and the Haus-
man and MaCurdy Methods

The local linearization, Hausman, and MaCurdy methods each utilize the result in Hall
(1973), mentioned previously, that in the presence of non-proportional taxation, a person
who has convex preferences will choose the same consumption-hours bundle on a nonlinear
budget constraint that they would choose if they faced a linear budget constraint tangent to
the actual budget constraint at the chosen bundle. As a result, desired labor supply on a
nonlinear budget constraint can be written as a function of the set of desired hours of work
that would be chosen if the worker faced various linear budget constraints tangent to the
nonlinear budget constraint, and the likelihood function or regression model can be written
in terms of such a labor supply function.
In this section, however, we show that the result used in Hall does not always apply when

preferences are nonconvex. This stems from the fact that when preferences are nonconvex,
but the budget constraint is nonlinear, the optimal consumption-leisure bundle may lie in
the interior of the convex hull of the upper contour set. The following propositions, then,
examine under what conditions on the utility function, U(C, h), the Hall result holds, and
thus can be applied to infer the desired hours of work on a nonlinear budget constraint.
Formally, let (C∗, h∗) = argmaxC,h{U(C, h) : C ≤ f(W,Y, h)}, where C is a composite

consumption good, h is hours of work, w is the wage, y is nonlabor income, and f(·) denotes
a nonlinear budget constraint. Let w∗ be the wage and y∗ be the level of virtual income,
defined such that w∗ = ∂f(h∗)

∂h
and y∗ = C∗ −w∗h∗. The following proposition shows that if

preferences are continuous, locally non-satiated, and strictly convex40, then the result used
in Hall holds, and hence the estimation methods commonly used are applicable.

Proposition 3 Let U(C, h) represents continuous, locally non-satiated, convex preferences
over consumption and hours of work. Then for (C 0, h0) such that

(C 0, h0) = argmax
C,h
{U(C, h) : C ≤ w∗h+ y∗},

(C 0, h0) = (C∗, h∗).

Proof. See Appendix B.

For the intuition behind Proposition 1, see Figure 5. Clearly, since all portions of the
actual budget constraint are tangent to or below the linearized budget constraint, and all
portions of the highest indifference curve are above the linearized budget constraint, the
optimal hours of work will be the same for both.
Thus, if preferences are strictly convex, the application of the Hall result is a valid one.

Furthermore, if preferences are nonconvex, but the chosen consumption-hours bundle on the
nonlinear budget constraint lies on the boundary of the convex hull of the upper contour set,
it is easy to see that the result in Hall once again applies.

40Although Hausman (1981) and MaCurdy et. al. (1990) assume strict convexity of preferences (or,
equivalently, strict quasiconcavity of the utility function), generalized versions of these results hold for the
case of weakly convex preferences.
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Figure 5: Graphical Demonstration of Proposition 1

If, however, preferences are nonconvex, and the optimal consumption-hours bundle with
the nonlinear budget constraint is not on the convex hull of the upper contour set, then the
result used in Hall does not apply.

Proposition 4 Let U(C, h) represents continuous, locally non-satiated, nonconvex prefer-
ences over consumption and leisure, but let (C∗, h∗) defined above lie inside the bound-
ary of the convex hull of {(C, h) : U(C, h) ≥ U(C∗, h∗)}. Then for (C 0, h0) such that
(C 0, h0) = argmax{U(C, h) : C ≤ w∗h+ y∗}, (C 0, h0) 6= (C∗, h∗).
Proof. See Appendix B.

The intuition behind this proposition can be seen in Figure 6. Since part of indifference
curve IC∗ lies below the linearized budget constraint, this indifference curve is not the highest
feasible indifference curve. Instead, utility will be maximized along IC 0, where the choice
of hours is different than on IC∗, and hence h∗ 6= h

0
.

Thus, if preferences are nonconvex, it is not necessarily true that the consumption-hours
bundle chosen on the actual nonlinear budget constraint is the same as that which would
be chosen if the individual faced a linear budget constraint tangent to the actual budget
constraint. Since local linearization methods, the Hausman method, and the MaCurdy
method all rely on the Hall result holding, the result of Proposition 2 suggests that these
methods will not be adaptable to the case of nonconvex preferences.
The unadaptability of local linearization is straightforward. An individual with noncon-

vex preferences would not necessarily choose the same hours of work on the actual budget
constraint as they would choose if they were faced with a linear budget constraint tangent
to the actual budget constraint at their observed hours of work. As a result, no simple
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Figure 6: Graphical Demonstration of Proposition 2

function of only the observed after tax wage and virtual income could possibly determine
the desired hours of work for the individual.
The Hausman and MaCurdy methods are more complex in their use of the Hall result,

but the inapplicability of the Hall result in some cases when preferences are nonconvex also
renders them unable to estimate parameters consistent with nonconvex preferences. For the
Hausman method, the result in Proposition 2 implies that the Hausman algorithm, which
identifies the desired hours on a nonlinear budget constraint, may fail when preferences are
nonconvex. In the MaCurdy method, the result in Proposition 2 implies that an equation
using an implicit function relied upon in the derivation of the likelihood may fail to hold
when preferences are nonconvex. These claims are proven in Appendix C.
Furthermore, although the discussion in this section has dealt with specific estimation

methods, it is clear that any method that attempts to apply the Hall result when formulating
an estimation method will not be adaptable to the case of nonconvex preferences, and that
this is true regardless of how flexibly one specifies the labor supply equation. For example,
the recent work of Blomquist and Newey (2000) applied nonparametric techniques to labor
supply estimation in this setting, but since their method also invoked the Hall result, it too
cannot be used to estimate parameters consistent with nonconvex preferences.

6 Relaxing the Assumption of Convexity by Estimat-
ing a Direct Utility Function

In this section, we outline a method that can be used to estimate labor supply parameters
in the presence of a nonconvex budget set without appealing to the Hall result.
To do so, instead of specifying the labor supply function, we specify a direct utility
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function. Since we are working with the direct utility function, we need not appeal to the
Hall result in order to identify an individual’s desired hours on the actual budget set, but must
simply find the hours choice that maximizes utility. Of course, the parameterization of the
utility function must be flexible enough so that it may represent either convex or nonconvex
preferences, but given such a specification, an estimation method may be constructed in a
straightforward manner.
One way of implementing such a method would be a straightforward adaptation of the

methods in Keane and Moffitt (1998) or Hoynes (1996), as was done in a recent paper by
van Soest et al. (2002).41 Suppose that there exists a sufficiently flexible specification of the
utility function, U(C, h;β), so that parameters, β, could make the utility function represent
either convex or nonconvex preferences. For example, one could use the functional form
described above in Section 4. Approximate individual ı́’s budget constraint by a set of
discrete consumption and hours pairs, {Cik, hik}Kk=1. The utility of each discrete point, then,
is this level of utility plus a random term, εik, so that

Ui(Cik, hik;β) = U(Cik, hik;β) + εik (32)

The probability of observing the individual working h∗ik hours, then, is

P (h∗ik) = P [U(Cik, h
∗
ik;β) + εik > U(Cij, hij;β) + εij ∀ j 6= k] (33)

The parameters, β, are then be chosen to maximize the likelihood of observing the sample.
There are some problems with this approach. First, this method requires that the labor

supply choice be discretized, when clearly this is a simplification. More importantly, how-
ever, in order for such a model to be computationally feasible, the assumption is often made
that the errors are distributed i.i.d. However, this assumption quickly becomes untenable
as the number of hours choice increases. On the other hand, modelling the dependence
between error terms probably makes the model computationally infeasible.
Instead, we follow a different approach. The approach that we use does not require that

one use a discrete approximation to the budget constraint, nor that the budget constraint be
piecewise linear or twice differentiable. This method does, however, involve the execution
of a computationally intensive maximization procedure.
Again, suppose there exists a specification of the utility function U(C, h;β) so that the

utility function may represent both convex and nonconvex preferences. Let the budget
constraint be given by C ≤ B(h,W, Y ), where C is consumption, h are hours of work, W is
the wage, Y is unearned income, B(·) is an arbitrary budget set, and β are the parameters
of interest.
Individual i, then, solves

max
h

U(C, h;β) (34)

s.t. C ≤ B(Wi, Yi, h)

41Neither Keane and Moffitt (1998) nor Hoynes (1996) note the possibility to extending their estimation
methods to allow preferences to be nonconvex, but there is nothing inherent in the methods that precludes
them from doing so.
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If U(C, h;β) is of a form such that agents exhaust their budget, this problem reduces to

max
h

U(B(Wi, Yi, h), h;β) (35)

So, let desired hours for individual i, given parameters β, be represented by

h∗i (β) = argmax
hi

U(B(Wi, Yi, h), h;β) (36)

Suppose first that only optimization error is present, and that no heterogeneity exists among
workers. Suppose that actual hours worked differ from desired hours worked by a factor
of ε, with a corresponding cumulative distribution function, known up to parameters σε,
of F (ε;σε) and probability density function of f(ε, σε), subject to hours worked being non-
negative. As a result, observed hours are related to desired hours in the manner

hi =

½
h∗i (β) + εi if h∗i (β) + εi > 0

0 if h∗i (β) + εi ≤ 0 (37)

Thus, this model reduces to a Tobit type model (albeit with a very complex argument). The
likelihood for individual i is thus

li = [1− F (h∗i (β);σε)]
1(hi=0)[f(hi − h∗i (β);σε)]

1(hi>0) (38)

where 1(·) denotes the indicator function.
Unobserved individual heterogeneity may also be incorporated into such a framework.

Let vi be an individual heterogeneity term, with a cumulative distribution function, known
up to parameters σv, of G(vi;σv).42 Individual i now solves

maxU(C, h, vi;β) (39)

s.t. C ≤ B(Wi, Yi, h)

Desired hours for individual i, given parameters β, are now represented by

h∗i (vi;β) = argmax
hi

U(B(Wi, Yi, h), h, vi;β) (40)

In this case, observed hours are related to desired hours in the manner

hi =

½
h∗i (vi;β) + εi if h∗i (vi, β) + εi > 0

0 if h∗i (vi, β) + εi ≤ 0 (41)

and the likelihood for individual i is now

li =

Z
vi

[1− F (h∗i (vi;β);σε)]
1(hi=0)[f(hi − h∗i (vi;β);σε)]

1(hi>0)dG(vi;σv) (42)

where 1(·) denotes the indicator function.
It is possible to make this approach computationally feasible by employing two numerical

methods. First, to perform the integration in (42) over the distribution of vi, one can use
Gaussian quadrature techniques, which approximate the likelihood with a weighted sum.
Second, to solve for h∗i (vi;β), which now must only be evaluated at discrete points, one can
perform a line search over [0,H] by first using a grid search method to bracket the utility
maximizing hours, and then use a bracketing technique to solve for h∗i (vi;β) accurate to four
decimal places.
42To aid in computation, G(vi;σv) may be a discrete distribution.
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7 Monte Carlo Comparison of the Hausman Method
to a Method that Estimates Parameters of a Direct
Utility Function

In order to compare the performance of the Hausman method and the method described
above, we perform Monte Carlo Experiments for the two methods using two specifications.
All of these Monte Carlo experiments take place in a setting that is generally favorable to the
Hausman method, in which the assumed and true data generating processes are the same,
preferences are convex over the hours range in which data are observed, and the true budget
constraint is piecewise linear and convex.
In the first set of experiments, the data generating preferences are those consistent with a

linear labor function. Since many of the papers reviewed in Hausman (1985b) and Blundell
andMaCurdy (1999) use a linear labor supply specification when using the Hausmanmethod,
it is clearly important to examine how the method describe above compares to the Hausman
method under this specification. This specification exhibits the bias that may result from
the Hausman method due to its requirement that parameters satisfy Slutsky positivity at
all kink points, but also shows that a method that estimates parameters of a direct utility
function may suffer from a similar bias, not due to any constraint in the likelihood that
parameters must satisfy Slutsky positivity, but rather due to peculiarities of the utility
function consistent with a linear labor supply function. These experiments illustrate the
importance of functional form choice, even when the direct utility function is being estimated.
In the second set of experiments, the data are assumed to be generated by a quadratic

utility function. This specification is one that has gained in popularity recently (see, for
example, Ransom (1987), Lacroix and Fortin (1992), Keane andMoffitt (1998), Blundell et al.
(1999) and others). It turns out that this specification demonstrates a clear bias that results
from the Hausman method’s requirement that parameters satisfy Slutsky positivity at all
kink points observed in the data. This problem arises if one makes the common assumption
that the support of the heterogeneity term is infinite, that desired hours increase with the
heterogeneity term linearly over the entire range of hours, and that the hours endowment
can take an arbitrary value. In this case, estimating a direct utility function does not suffer
from such a large bias, because, as will be seen, this method prohibits desired hours from
increasing linearly with the heterogeneity term if such hours lie in a range where preferences
are nonmonotonic or nonconvex. These experiments, then, illustrate that the choice of
stochastic specification and hours endowment are not inconsequential choices, but rather
can have large effects on the resulting estimated parameters.

7.1 Source of Wage and Income Data, Parameters, and Genera-
tion of Simulated Data

Data for the wages and non-labor incomes in these Monte Carlo experiments come from the
1975 and 1976 Panel Study of Income Dynamics. In order to closely match the samples that
have been previously used, we attempt to replicate the sample used in Hausman (1981) by
using the sample selection criteria outlined in Eklöf and Sacklén (2000). Sample statistics
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Table 3: Sample Statistics: Hausman (1981) Sample
Variable N Mean Std. Dev. Min. Max

Annual Hours of Work 1084 2148.54 584.57 0.00 5096.00
Nonlabor Income 1084 1387.54 1618.69 0.00 29120.00
Gross Wage 1082 6.27 1.84 0.67 9.99

Table 4: 1975 Income Tax Table
Standard Deduction for Married Filing Jointly $1,900

Marginal Tax Rate is on Net Income Above But Below
14% $0 $1,000
16% $1,000 $4,000
19% $4,000 $8,000
22% $8,000 $12,000
25% $12,000 $16,000
28% $16,000 $20,000
32% $20,000 $24,000
36% $24,000 $28,000
39% $28,000 $32,000
42% $32,000 $36,000
45% $36,000 $40,000
48% $40,000 $44,000
50% $44,000 —

are presented in Table 3. We also follow Hausman’s method for creating hours, wage
and income variables. As such, hours worked are defined as reported average hours per
week times weeks per year. The gross wage comes from a direct report of the wage rate,
with topcoded and missing wages replaced by predicted wages from a Tobit wage equation.
Finally, the nonlabor income variable is constructed by attributing an eight percent return
to housing equity.
For each individual in a given sample, using their gross wage and nonlabor income vari-

ables, we calculate parameters of each individual’s piecewise linear budget constraint using
the federal income tax schedule for tax year 1975, which is summarized in Table 4. Taking
account of only federal taxes not only simplifies the programming in these simulations, but
also ensures that the budget constraint is convex due to the progressive nature of the income
tax schedule, which greatly simplifies implementation of the Hausman method.
Data are generated as follows. For each individual, a value of εi and vi are drawn from

their respective distributions. The individual’s simulated desired hours, h∗i , and observed
hours, are then derived using the relevant algorithms outlined in Appendix D.
We perform simulations of each of the methods using a variety of parameters to examine

the behavior of each of the methods under various conditions. We initially attempt to use,
with some modifications due to the differing models that are being estimated, the parameters
estimated in Hausman (1981). We also draw from the results of other studies in order to
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examine whether the results differ depending on the parametrization.
For the linear labor supply function specification, the estimated labor supply function is

h = c+ αw + βy + v, (43)

and the corresponding utility function used in the method that estimates a direct utility
function is

U(C, h) =
1

β

µ
h− α

β

¶
exp−

1 + β
³
C + c+v

β
− α

β2

´
α
β
− h

 . (44)

Since α is simply the uncompensated wage effect in this specification and β is simply the
income effect, we are able to use estimates of wage and income effects directly when specifying
the parameters used in the experiments.
To choose these parameter values, we draw from various sources. Hausman (1981) used

a linear specification for the labor supply function of the form and estimated the constant to
be 2, 419.5, the uncompensated wage effect to be .2, and a distribution of the income effect
with a mean of −.166 and a median of −.120. In comparison, in a summary of related
studies in Blundell and MaCurdy (1999), the authors compile results from various studies
which report uncompensated wage elasticities ranging from 0 to .25, with a mean of .085 and
a median of .08. These values translate in our sample to uncompensated wage effects ranging
from 0 to 85.6, with a mean of 29.1 and a median of 27.4. The total income elasticities
(defined as ∂h

∂y
w) that are reported, on the other hand, range from 0 to −1.03, with a mean

of −.158 and a median of −.07. Again, for our sample, these values translate to income
effects ranging from 0 to −.166, with a mean of −.025 and a median of −.011. As such, we
use values of α ranging from .2 to 100, and values of β ranging from −.0166 to −.166. For
c, we use the Hausman estimated value of 2419.5. To complete the specification of the data
generating process, however, we must identify values to use for the standard deviations of
the heterogeneity and measurement error distributions. For these, we turn to Triest (1990),
who, in estimating the linear labor supply specification, obtains estimates of σv = 234.5 and
σε = 498.5.
For the quadratic utility specification, when using the method that estimates parameters

of the direct utility function, the estimated utility function is

U(C, h) = βh2 + γCh+ (δ + v)h+ C. (45)

The corresponding labor supply function estimated when using the Hausman method takes
the form

h =
−w − γy − (δ + v)

2(γw + β)
. (46)

Therefore, we must translate the wage and income effects listed above into the parameters
of this function. To do this translation, we solve for parameters such that, when evaluated
at a wage of $4.50 (approximately the mean after tax wage) and a nonlabor income of $2200
(approximately the mean virtual income across all budget constraints), the uncompensated
wage effect ranges from .2 to 100, and the income effect ranges from −.0166 to −.1243. To
43Note that we do not use an income effect of -.166 due to the peculiar shape that indifference curves take

under the quadratic utility function specification when the income effect is this large.
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remain consistent with the linear labor supply specification, the value of σv is chosen so
that the effect of v measured in hours in the labor supply equation in (46) has a standard
deviation of 234.5 when evaluated at a wage of 4.5 and the relevant parameters.44 Finally,
we use the value of σε = 498.5 estimated by Triest.
The likelihood functions used in these experiments, as well as the numerical methods

used to make estimation of a direct utility function computationally feasible, are described
in more detail in Appendix D. In all of the experiments, we constrain all terms of the
likelihood functions to be nonnegative.

7.2 Results

7.2.1 Linear Labor Supply

In Table 5, we present the results of Monte Carlo experiments examining the behavior of the
Hausman method and the alternative method under the linear labor supply specification.
The first row of each group of results reports the true data generating parameters for the

group. The second row presents results from the Hausman method Monte Carlo experiments
in which the sample size is increased by a factor of 10 by replicating the sample described
above and drawing different stochastic elements for each replicated individual. This row,
then, provides evidence on the behavior of the Hausman method when the sample is consid-
erably larger than samples previously used in this literature. The third row of each group
presents results from Hausman method Monte Carlo experiments using the original sample
of 1074 individuals. This row can be used to examine the small sample properties of the
Hausman method. In the fourth and last row of each group, we present the results when we
estimate parameters of the direct utility function using Gaussian quadrature and line search
techniques.
From these Monte Carlo experiments, it is clear that when the true uncompensated

wage elasticity is small, there is considerable small sample bias in both methods. For
example, using the original sample of 1074 individuals, when the true uncompensated wage
elasticity is .0005 in Specification 1, the estimated uncompensated wage elasticity displays
a bias that is between .023 and .015 in the two methods. When the true uncompensated
wage elasticity is .0052 in Specification 3, the bias in the uncompensated wage elasticity
estimated by the Hausman method decreases slightly to .021. When a direct utility function
is estimated, this bias reaches only decreases to .018. The bias generally decreases as the
true uncompensated wage elasticity increases, but is still quite large, with a bias of .011
when the true uncompensated wage effect is .1206 in Specification 7, and a bias of .013 when
the true elasticity is .2756 in Specification 9.
The bias in the Hausman method does decrease dramatically, however, as sample size

increases. When the sample size is increased by a factor of 10, the bias in the uncompensated
wage elasticity almost disappears when the true uncompensated wage elasticity is between

44In other words, we solve for σv in the equation

234.5 =
σv

2 (4.5γ + β)
.
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.05 and .2756, and even when the true elasticity is only .0005, the bias in this elasticity is
considerably smaller, at .0058.
In the far right column, we report the percent of replications in which the constraint

in the Hausman method, that Slutsky positivity be satisfied at all kink points, is binding.
When α = .2 and β = −.166 in Specification 2, for example, we find that the constraint is
binding at the maximum likelihood estimates in 23% of the replications. When the sample
size is increased tenfold, this event still occurs 30% of the time. Interestingly, given a value
for α, when the true value of β is smaller in absolute value, this event is less prevalent. In
addition, for larger values of α, the constraint is binding to a lesser extent. When α = 50
or larger, no replications result in parameters at which the constraint is binding.
In small samples, estimates of the income elasticity are biased to a much lesser extent than

the estimates of the uncompensated wage elasticities, even when the true income elasticity
is close to 0. However, the bias still can be substantial. For example, in specification 1, the
bias in the income elasticity in the Hausman method is -.0025 when the original sample is
used, and this drops to -.0011 when the sample size is increased tenfold. In the experiments
estimating a direct utility function on the original sample, the bias in the income elasticity
is -.0018.
The bottom two lines for each specification provide a direct comparison of the two meth-

ods. Generally, estimating a direct utility function does about as well as the Hausman
method. In some specifications of parameters, estimating a direct utility function using
line search and Gaussian quadrature yields estimates that suffer from less bias, but the
improvement is often small.
The failure of estimation of a direct utility function to perform decidedly better than the

Hausman method, despite the fact that there is no implicit constraint that parameters satisfy
Slutsky positivity, derives from the following. When α < 0 or β > 0 in this specification,
indifference curves have a peculiar shape, and in such a case, utility is maximized at the
extremes (h∗i = 0 or h∗i = 5800) for most individuals in the data.45 Hence, it is very
unlikely that these parameters will be the parameters at which the likelihood function is
maximized. However, contrary to the Hausman method case above, the optimal parameters
will be parameters consistent with Slutsky positivity not because they are forced to do so,
but rather because parameters that violate Slutsky positivity would be a bad fit to the data.
Thus, these experiment illustrate the importance of functional form choice in doing struc-

tural labor supply estimation. The Slutsky constraint in the Hausman method when a linear
labor supply specification is used essentially constrains α to be positive and β to be negative,
but estimating parameters of the associated direct utility function does not get around this,
because of peculiarities in this functional form.

45The reason for this is as follows. When a < 0 and β < 0, the first term is everywhere negative and
the third is everywhere positive, but the second term switches from negative to positive as hours increase
past α

β , and so utility switches from positive to negative. Utility in this case could thus only be maximized
where h < a

β , and examination of graphs of indifference curves over this range suggest that utility will only
be maximized at h = 0 or α

β .
Similar logic applies when α > 0 and β > 0, but in this case, utility appears to be maximized either at α

β
or 5800 hours.
Finally, when a < 0 and β > 0 utility is everywhere positive, and so not discontinuous at h = α

β , but
indifference curves appear to be concave, resulting in utility being maximized in the majority of cases at
either 0 or 5800 hours.
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Nevertheless, in the linear labor supply specification, both methods appear to do about
as well. In the specification below, however, the results obtained from the two methods are
dramatically different.

7.2.2 Quadratic Utility

In Table 6, we present the results of Monte Carlo experiments comparing estimates using the
Hausman method and estimates of parameters of a direct utility function using line search
and Gaussian quadrature techniques under the quadratic utility specification. In this table,
the first row of each group of results reports the true data generating parameters for the
group. The second and third rows of each group presents results from 100 replications from
the Hausman method Monte Carlo experiments using the original sample of 1074 individuals.
The second row reports estimates where the hours endowment is 5800 per year, while the
third row reports estimates were the endowment is 4000 per year. In the fourth and last row
of each specification, we report estimates obtained by maximizing the direct utility function.
Unlike the previous specification, the Hausman method suffers from a large bias in most

of the specifications when choices are determined by a quadratic utility function, whereas
the parameters that are obtained by estimating a direct utility function using line search and
Gaussian quadrature suffers from little bias in comparison. For the discussion that follows,
it is useful to keep in mind the form that the Slutsky constraint takes in this specification.
As noted in Appendix D, the constraint takes the form 1+ bγHj ≥ 0. Since the largest kink
point observed in this data was approximately 5800 hours46, this constraint implies that bγ
is constrained such that bγ ≥ −.0001724.
In almost all of the Hausman method specifications, this constraint is binding in the vast

majority of the replications. This, in turn, biases the estimated wage and income elasticities
to a great extent. For example, in first row with a 5800 hours endowment for specification
2, the estimated income elasticity is biased downward in absolute value by .0174, when the
true income elasticity was -.0455, and the estimated uncompensated wage elasticity is biased
upward by .1762, when the true wage elasticity was .0004. Although this group presents
results for which the bias is extremely large, it is not an outlier. In fact, in seven of the
twelve specifications, the estimated uncompensated wage elasticity is biased by more than
.1.
Estimating parameters of the direct utility function, on the other hand, results in elastic-

ity estimates that are much less biased. The estimated income elasticity tends to be biased
less than .005, and the uncompensated wage elasticity tends to be biased by less than .03.
Although these estimates are by no means unbiased, the bias is clearly much smaller than
that found when using the Hausman method.
Two differences between these methods seem to be driving these dramatically different

results. As background information, note that over
h
0, −1

γ

i
, which is the range in which all

of the simulated data are observed, the theoretical likelihood functions are the same; they
are just written in different forms. Nevertheless, the numerical methods that are used to
evaluate the likelihood are different, in that the Hausman method uses an exact calculation
of the likelihood, whereas estimating parameters of a direct utility function requires the use

46Recall that the maximimum number of hours in this specification, H, was set to 8000 hours.
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of a discrete approximation of the likelihood using Gaussian quadrature to make the method
computationally feasible. This approximation over most of the range of the data, however,
does not seem to be what is driving the difference.
The first difference that seems to affect the estimated parameters is that, because the

method that estimates parameters of the direct utility function calculates the likelihood using
a discrete approximation to the likelihood function, the method implicitly puts no weight on
desired hours that would be the desired hours only if the individual’s draw of vi had been
more than several standard deviations above the mean. Given the stochastic specification
in this group of Monte Carlo results, however, the Hausman method requires that there be
a positive probability that desired hours be at any kink point, no matter how extreme its
value (even those above −1

γ
, which is usually about 7 standard deviations above the mean).

Since, in this specification, these hours have a positive, though extremely small, probability
of being the desired hours, Slutsky positivity must be satisfied at the kink points that lie in
this range, something that is not required when estimating parameters of the direct utility
function.
The second difference results from the fact that for hours over the range

h
−1
γ
,∞
´
, the

likelihood functions are different. In this stochastic specification of the Hausman method,
with desired hours on a linearized budget constraint increasing linearly with vi, which has
infinite support, implies that there must be a positive probability of desired hours falling at
any kink points observed in the data. Hence, parameters are constrained to be such that
Slutsky positivity holds at such hours, which implies that estimated parameters must satisfy

1 + γHj ≥ 0 (47)

or
Hj ≤ −1

γ
(48)

for any Hj observed in the data. If this inequality were not satisfied, then terms in the
likelihood corresponding to the probability of desired hours falling at kink points beyond
−1
γ
would be negative. Thus in requiring all terms in the likelihood to be nonnegative, γ is

constrained to be no more negative than approximately -.0001724.
In a method in which a direct utility function is estimated using line search and Gaussian

quadrature techniques, however, when

U = βh2 + γCh+ (δ + vi)h+ C (49)

is maximized subject to the budget constraint, the curvature of this utility function is such
that utility is never maximized at a level of hours greater than −1

γ
. Thus, if there are any

kink points beyond −1
γ
on the hours axis, there is simply zero probability that these kink

points are the individual’s desired hours. This, in turn, puts no requirements on the sign of
the Slutsky term when evaluated at these hours.
Thus, in this specification, estimating a direct utility function greatly reduces the amount

of bias in the estimated parameters. This, in turn, illustrates the importance of the choice of
stochastic specification and hours endowment when using the Hausman method. Parameters
in that method were constrained to satisfy Slutsky positivity at any kink points observed
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in the data below 5800 hours, because the hours endowment was set at 5800 hours, and
because the chosen stochastic specification implied that any of those hours must have positive
probabilities of being chosen. If the hours endowment were set much lower, this would reduce
the range over which kink points were observed in the data, which in turn would relax the
Slutsky constraint somewhat, possibly reducing the bias that the Hausman method suffers.
Further, if the stochastic specification were changed so that these extreme levels of hours
had zero probability of being chosen, this would alter the likelihood function of the Hausman
method to be more in line with that of estimating a direct utility function, again possibly
reducing the bias. Nevertheless, the experiments presented here suggest that the choice of
stochastic specification and hours endowment, previously thought to be unimportant choices
to make, may not be so.

7.3 Summary of Monte Carlo Experiments

Thus, it appears that, in moving to a method in which a direct utility function is estimated
using line search and Gaussian quadrature techniques, we have not lost any precision in the
estimates compared to those found using the Hausman method. Further, these Monte Carlo
experiments have illustrated the importance of functional form, stochastic specification, and
hours endowment choices.
Obviously, the estimation of a direct utility function is much more computationally in-

tensive than is the Hausman method. However, there are some clear benefits. First, the
use of such a method may provide guidance as to when choices of functional form, stochastic
specification, and hours endowments are important, and when they are not. Second, it may
be implemented using functional forms for utility that do not have closed form expressions
for the related labor supply function. Finally, and most importantly in the context of this
paper, such a method can be implemented with a functional form in which parameters may
represent nonconvex preferences.

8 Conclusion

In this chapter, we have reviewed various methods that have been used to estimate labor
supply parameters in the presence of nonlinear budget constraints. We noted the weaknesses
in the local linearization methods, even when instrumental variables are used. We examined
the Hausman method, and noted that the MaCurdy critique pointed out where assumptions
made in the construction of the likelihood were enforced. We then provided an argument
why data consistent with nonconvex preference maximization can lead to parameters that
violate Slutsky positivity when using one of the standard methods, and presented a numer-
ical example that demonstrated this claim. We further showed that it is not possible to
adapt these methods to allow for the estimation of parameters consistent with nonconvex
preferences. Finally, we suggested a method that can be used to estimate such preferences,
and evaluated its performance in comparison to the Hausman method using Monte Carlo
experiments. These Monte Carlo experiments illustrated that in moving to a method in
which a direct utility function is estimated using line search and Gaussian quadrature tech-
niques, no precision is lost. In addition, they demonstrated the importance of functional
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form assumptions when using either method, and the importance of assumptions about the
stochastic specification and hours endowments when using the Hausman method.
How seriously should one take the possibility of nonconvex preferences? That issue

is addressed in the next chapter of this dissertation. In it, we discuss the plausibility of
nonconvex preferences in the setting of structural labor supply models. We argue that, be-
sides the possibility of preferences over consumption and leisure being nonconvex, even when
these underlying preferences are convex, data generating preferences in a structural labor
supply model may still be nonconvex because of the way structural models are customarily
formulated.
This is because the variables used in structural estimation are usually not consumption

and leisure, but rather monetary outlays and hours of work. We show that, in ignoring
costs of work that vary with the number of hours worked, when translating preferences over
consumption and leisure into preferences over monetary outlays and hours of work, work
costs that are unaccounted for in budget and time constraints in the structural model are
subsumed into data generating preferences. We then establish a necessary condition on the
form of the work costs functions for these data generating preferences over monetary outlays
and hours of work to be nonconvex. Finally, we argue that an examination of the likely
form of work costs suggests that nonconvex preferences are plausible in this setting.
Hence, we argue that the one should take seriously the possibility that preferences are

nonconvex, and use a method that allows for such a possibility when estimating labor sup-
ply. In this paper, we show how to allow for nonconvexities in preferences in labor supply
estimation, and note the likely consequences if one does not.

9 Appendix A

The presentation of two sets of arguments in the paper was simplified by the use of linear
labor supply. We generalize those arguments here. The first argument is the explanation
of the MaCurdy critique in Section 3.2. The second argument is the Section 4 explanation
of how nonconvexities in preferences may lead to optimal parameters that would violate the
Slutsky constraint. Both of these arguments may be generalized with an appeal to the mean
value theorem, under the assumption that the estimated labor supply function is continuous
and differentiable. In this case, let the desired hours of labor supply function on segment j,
Sj, be given by h(wj, yj ,X, v, θ), where wj and yj are the after tax wage and virtual income
associated with Sj, X are other independent variables that are constant regardless of the
number of hours worked, v denotes unobservable heterogeneity, and θ are the parameters to
be estimated.
The argument in Section 3.2 can be generalized as follows: There must be some set, Vj,

of unobservable heterogeneity, v for which h(wj, yj,X, v, θ) ≥ Hj and h(wj+1, yj+1, X, v, θ) ≤
Hj. These two together imply that, for v ∈ Vj,

h(wj, yj, X, v, θ) ≥ h(wj+1, yj+1, X, v, θ) (50)

which implies that
h(wj, yj,X, v, θ)− h(wj+1, yj+1,X, v, θ) ≥ 0 (51)
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Using the mean value theorem, we have that, for some (bw, by) such that (bw, by) = t (wj, yj) +
(1− t) (wj+1, yj+1) , t ≤ 1,

∂h(bw, by,X, v, θ)

∂w
(wj − wj+1) +

∂h(bw, by,X, v, θ)

∂y
(yj − yj+1) ≥ 0 (52)

Using the fact that yj+1 = yj + (wj − wj+1)Hj, we have that

∂h( bw, by,X, v, θ)

∂w
− ∂h(bw, by,X, v, θ)

∂y
Hj ≥ 0 (53)

which is the Slutsky term evaluated at (bw, by) and Hj. Of course, if there is a range of v such
that (50) must hold, there is likely a range of (w, y) over which (53) must hold. Further,
the linear case is a special case of this result, in which ∂h( bw,by,X,v,θ)

∂w
= α and ∂h( bw,by,X,v,θ)

∂y
= β

∀ (bw, by).
10 Appendix B

In this appendix, we provide proofs for several propositions that appear in the main text of
the paper.
Proposition 5.1. Let U(C,H) represents continuous, locally non-satiated, convex

preferences over consumption and hours of work. Then for (C 0, h0) such that (C 0, h0) =
argmaxC,h{U(C, h) : C ≤ w∗h+ y∗}, (C 0, h0) = (C∗, h∗).
Proof. Suppose not, that (C 0, h0) 6= (C∗, h∗). Then it must be that U(C 0, h0) > U(C∗, h∗),
and C 0 = w∗h0 + y∗. Then, by local nonsatiation, there must exist some (C”, h”) s.t.
U(C 00, h00) = U(C∗, h∗) and C 00 < w∗h00 + y∗. But, since preferences are convex, for every
pair {(C, h) : U(C, h) ≥ U(C∗, h∗)}, it must be that (C, h) is an element of the intersections
of the upper half spaces that contain this set. Clearly, since C ≥ w∗h+y∗ is one of such half
spaces, then it must be that C 00 ≥ w∗h00 + y∗.⇒⇐=

Proposition 5.2. Let U(C, h) represents continuous, locally non-satiated, nonconvex
preferences over consumption and leisure, but let (C∗, h∗) defined above lie inside the bound-
ary of the convex hull of {(C, h) : U(C, h) ≥ U(C∗, h∗)}. Then for (C 0, h0) such that
(C 0, h0) = argmax{U(C, h) : C ≤ w∗h+ y∗}, (C 0, h0) 6= (C∗, h∗).
Proof. Since preferences are nonconvex, and (C∗, L∗) lies inside the boundary of the convex
hull of {(C, h) : U(C, h) ≥ U(C∗, h∗)}, then ∃ (C 00, h00) such that C 00 < w∗h00 + y∗ and
U(C 00, h00) = U(C∗, h∗). Then, by local nonsatiation, ∃ (C 000, h000) such that C 000 = w∗h000 + y∗

and U(C 000, h000) > U(C∗, h∗). Hence, (C∗, h∗) 6= argmax{U(C, h) : C ≤ w∗h+ y∗}.

11 Appendix C

In this appendix, we formally show why the Hausman and MaCurdy methods may not be
adapted to estimate preferences consistent with the maximization of nonconvex preferences.
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11.1 Unadaptability of Hausman Method

In the following proposition we show that the algorithm implicit in the Hausman method
used to identify desired hours on a nonlinear budget constraint may fail to yield the actual
desired hours for individuals with nonconvex preferences. As a result, the likelihood in (17)
will be misspecified.
Again, let a piecewise linear budget constraint be characterized by a set {wj, yj}, j =

1..N , where wj is the after tax wage rate for hours of work between kink points Hj−1 and Hj,
and yj is the associated virtual income, and denote Sj as the segment of the budget constraint
between Hj−1 and Hj. When budget constraints are convex, the Hausman method uses an
algorithm that derives the desired hours of work as follows. Let h(w, y) denote the labor
supply correspondence derived by maximizing a utility function U(C, h) subject to a linear
budget constraint C ≤ wh + y. Then, denote Hausman desired hours of work, hH , as the
desired hours of work that are derived through the following algorithm:

hH =

½
h(wj, yj) if h(wj, yj) ∈ Sj for some j

Hj if h(wj, yj) > Hj and h(wj+1, yj+1) < Hj for some j
(54)

Let h∗ be an element of the set of solutions to

h∗ ∈ {argmaxU(C, h) s.t. C ≤ y+
JX

j=1

(1− tj)w

·
(Hj −Hj−1) · 1(h ≥ Hj)

+(h−Hj−1) · 1(Hj > h ≥ Hj−1)

¸
(55)

That is, h∗ is the hours of work chosen by a utility maximizing agent faced with a piecewise
linear budget constraint. The Hausman method utilizes the idea that, if preferences are
strictly convex, then hH = h∗. As a result, given parameters and stochastic elements, the
likelihood that the sample is generated by the utility maximization in (55) is identical to the
likelihood that the sample is generated by people using the Hausman algorithm to choose
their desired hours of work in (54).
However, the following proposition demonstrates that if preferences are nonconvex, then

the desired hours generated by the Hausman algorithm, hH , are not always equal to the
actual desired hours, h∗.
Proposition C.1. Let U (C, h) represent nonconvex preferences, and derive h (w, y) by

maximizing U (C, h) subject to the budget constraint C ≤ wh + y. Let h∗ be the hours
that maximize U (C, h) on a piecewise linear budget constraint. If h∗ occurs (1) on the
interior of segment Sj and (2) on the interior of the convex hull of the upper contour set of
the indifference curve, then hH 6= h∗.
Proof. Define C1 and h1 such that U(C1, h1) = U(C∗, h∗), where

h1 = argmax
h

½
h : (C, h) ∈ boundary of

convex hull
{(C, h) : U(C, h) ≥ U(C∗, h∗)} ; h < h∗

¾
(56)

and define C2 and h2 such that U(C2, h2) = U(C∗, h∗), where

h2 = argmin
h

½
h : (C, h) ∈ boundary of

convex hull
{(C, h) : U(C, h) ≥ U(C∗, h∗)} ; h > h∗

¾
(57)
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Again, h1 and h2 bracket h∗. (See Figure 6) Let w = C2−C1
h2−h1 . Since the tangency of the

indifference curve and the actual budget constraint occurs on the interior of segment Sj and
on the interior of the convex hull of the upper contour set of the indifference curve, then
either w ∈ (wj, wj+1), or w ∈ (wj−1, wj). If w ∈ (wj, wj+1), then hj(wj, yj) > h2 > Hj, and
hj+1(wj+1, yj+1) < h1 < Hj =⇒ hH = Hj. If w ∈ (wj−1, wj), then hj−1(wj−1, yj−1) > h2 >
Hj−1, and hj(wj, yj) < h1 < Hj−1 =⇒ hH = Hj−1. Since h∗ ∈ Sj = (Hj−1,Hj), h∗ 6= hH .

Refer back to Figure 6. In this case, h (w2, y2) is clearly greater than H2, and h (w3, y3)
is clearly less than H2. Hence, the Hausman algorithm would yield Hausman desired hours
hH = H2, when this is clearly not the actual optimal level of hours.47

Hence, the desired hours inferred by Hausman algorithm are not always equal to true
desired hours when h(w, y) is derived from the maximization of nonconvex preferences, re-
gardless of how flexible the specification of h (w, y). Since a likelihood function derived from
the application of this algorithm will not calculate the correct likelihood for the sample, the
Hausman method cannot be generalized to estimate parameters consistent with nonconvex
preferences.

11.2 Unadaptability of MaCurdy Method

In this section, we show that the MaCurdy method also cannot be generalized to estimate
parameters consistent with nonconvex preferences. MaCurdy et al. define a budget con-
straint as consisting of two functions, w(h) and y(h), where w(h) is the slope of the budget
constraint at hours of work h, and y(h) is the virtual income associated with a linear budget
constraint tangent to the actual budget constraint at hours of work h. They then note that
if h > 0 and preferences are convex, then hours worked must satisfy the implicit equation
h = hs(w(h), y(h), v), where hs(w(h), y(h), v) is the worker’s choice of hours if he were faced
with a linear budget constraint with slope w(h) and virtual income y(h), and v denotes
individual heterogeneity. Derivation of the likelihood involves solving this implicit equation
analytically for h as a function of v and other variables and parameters, and using the Im-
plicit Function Theorem to transform the equation to v = vs (h,w(h), y(h)). The density of
positive hours in the likelihood function then takes this function as an argument.
Now, however, suppose that hs(w(h), y(h), v) is derived from the maximization of non-

convex preferences represented by the utility function U(C, hs; v) subject to the budget con-
straint C ≤ w(h)hs+y(h).48 The following proposition demonstrates that when preferences
are nonconvex, the above implicit equation may fail to hold, and so the likelihood function
cannot be derived in the manner described above.
47Although the above propositions deal with convex budget sets, the arguments apply equally well to the

Hausman method used in nonconvex budget sets. In Hausman (1985), a generalization of previously used
methods is presented, in which a nonconvex piecewise linear budget set is decomposed into a union of a finite
number of convex budget sets. The desired hours of work on each of the convex budget sets is derived, and
then the indirect utility at each of these choices is compared, to yield the desired hours of work on the actual
nonconvex budget set. Since this method requires the use of the Hausman algorithm for convex budget
sets described above, any problems in applying the Hausman algorithm to nonconvex preferences when the
budget set is convex are present in the nonconvex budget set case as well.
48Since U(C, hs; v) represents nonconvex preferences, hs(w(h), y(h), v) will again likely be a complicated

correspondence that is discontinuous in its arguments.
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Figure 7: Graphical Demonstration of Corollary 2

Corollary 2. Let U(C, h; v) represents continuous, locally non-satiated, nonconvex pref-
erences over consumption and hours of work, and let (C∗, h∗) be the utility maximizing lev-
els of consumption and hours of work on the nonlinear budget constraint. Let (C∗, h∗)
lie inside the boundary of the convex hull of {(C, h) : U(C, h; v) ≥ U(C∗, h∗; v)}. Then
h∗ 6= hs(w(h∗), y(h∗), v).
Proof. Note that hs(w(h∗), y(h∗), v) = argmaxh {U(C, h, v) : C ≤ w(h∗)h+ y(h∗)}. Apply-
ing Proposition 2 yields the result.

To understand the intuition behind this corollary, see Figure7. In this figure, the wage
and virtual income associated with the linear budget constraint tangent to the differentiable
budget constraint at h∗ are w(h∗) and y(h∗). The optimal hours of work on this linear
budget constraint, however, is hs 6= h∗.
Thus, the method in MaCurdy et al. also cannot be adapted to allow estimated parame-

ters be consistent with nonconvex preferences.

12 Appendix D - Likelihood Functions

The assumed data genrating process for each of the specifications that follow is described by
the following. Individual i is assumed to solve

maxU(C, h, vi;β) (58)

s.t. C ≤ B(h,Wi, Yi).

where U (Ci, hi, vi;β) takes one of the forms outlined below. If U is everywhere increasing
in C, then desired hours for individual i, given parameters β, may be written as

h∗i (vi;β) = argmax
hi

U(B(hi,Wi, Yi), hi, vi;β). (59)
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It is assumed that, for individuals that are observed to be working, we observe hi =
h∗i (vi;β)+εi, where εi denotes optimization or measurement error. It is further assumed (as
in Hausman (1981)) that an individual is observed working 0 hours if desired hours are 0, or
if desired hours are positive but εi is sufficiently negative so as to induce the individual not
to work. Thus, observed hours are assumed to be related to desired hours in the manner

hi =

 h∗i (vi;β) + εi if h∗i (vi, β) > 0 and h∗i (vi, β) + εi > 0

0 if

½
h∗i (vi, β) = 0

or h∗i (vi, β) > 0 and h∗i (vi, β) + ε ≤ 0.
(60)

The assumed data generating process in the Hausman method utilizes an algorithm to
simplify the epression in (59). Formally, let hij (vi, β) be the optimal labor supply if an
individual with heterogeneity vi were maximizing utility over consumption and hours of work,
U(C, h, vi;β), subject to the budget constraint defined by C = wijh + yij. The particular
specifications of hij (vi, β) are outlined in the discussion that follows. If U(C, h, vi;β) is
strictly quasiconcave over

£
0,H

¤
, and the budget constraint is piecewise linear, then the

expression in (59) may be rewritten as

h∗i (vi, β) =


Hi0 if hi1 (vi, β) ≤ Hi0 (lower limit)

hij (vi, β) if Hi,j−1 < hij (vi, β) < Hij (segment j)
Hij if hij (vi, β) ≥ Hij and hi,j+1 (vi, β) ≤ Hij (kink j)
HiJ if hiJ (vi, β) ≥ HiJ (upper limit).

(61)

Thus, in the Explicit Utility Maximization method, the assumed data generating process
is described by (59) and (60), whereas in the Hausman method, the assumed data generating
process is described by (61) and (60).

12.1 Linear Labor Supply

In the linear labor supply specification, the utility function is assumed to take the form

U(C, h, vi; c, a, β) =
1

β

µ
h− α

β

¶
exp−

1 + β
³
C + c+vi

β
− α

β2

´
α
β
− h

 , (62)

As such, hij (vi, β) takes the form

hij (vi, c, α, β) = c+ awj + βyj + vi.

It is also assumed that vi˜N(0, σ2v) and ε˜N(0, σ2ε).
Under these assumptions, letting

hij (vi, c, α, β) = c+ awj + βyj,

the Hausman method likelihood of observing individual i working hi hours is49

49Note that this likelihood function is the one found in Moffitt (1986) with some corrections.
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L(hi|hi > 0) =
J−1X
j=0

1

σεv
φ

µ
hi − hi,j+1

σεv

¶ Φ

µ
Hi,j+1−hi,j+1

σv
−ρhi−hi,j+1

σεv√
1−ρ2

¶
−Φ

µ
Hij−hi,j+1

σv
−ρhi−hi,j+1

σεv√
1−ρ2

¶
 (63)

+
JX

j=1

1

σε
φ

µ
hi −Hij

σε

¶·
Φ

µ
Hij − hi,j+1

σv

¶
− Φ

µ
Hij − hij

σv

¶¸

+
1

σεv
φ

µ
hi − hi,J+1

σεv

¶"
1− Φ

Ã
HiJ−hi,J+1

σv
− ρ

hi−hi,J+1
σεvp

1− ρ2

!#
.

where σεv =
p
σ2v + σ2ε and ρ = σv/σεv. The likelihood of observing individual i working 0

hours is

L(hi|hi = 0) = Φ

µ−hi1
σv

¶
(64)

+
JX
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·
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µ
Hj − hij

σv
,
−hij
σεv

, ρ

¶
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,
−hij
σεv

, ρ

¶¸

+
JX
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µ−Hj
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¶
− Φ

µ
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¶¸
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·
Φ

µ−hi,J+1
σεv

¶
− Φ

µ
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σv
,
−hi,J+1
σεv

, ρ

¶¸
.

where Φ (m,n, ρ) denotes the cumulative distribution function for standard bivariate normal
variables with correlation ρ, cumulative over (−∞,m]× (−∞, n]. The overall likelihood of
observing the sample, then, is

NY
i=1

L(hi|hi > 0)1(hi>0)L(hi|hi = 0)1(hi=0), (65)

where 1 (·) denotes the indicator function. In this specification, all probabilities in the
likelihood are positive iff α− βHj ≥ 0∀Hj.
When estimating parameters of a direct utility function, the likelihood takes the form

L =
Y
i


Ã

∞R
vi0(β)

1
σε
φ
³
hi−h∗i (vi;β)

σε

´
dΦ( vi

σv
)

!1(hi>0)

×
Ã
Φ
³
vi0(β)
σv

´
+

∞R
vi0(β)

Φ
³−h∗i (vi;β)

σε

´
dΦ( vi

σv
)

!1(hi=0)
 , (66)

where vi0(β) is defined as vi s.t. h∗i (vi;β) = 0. Since the integrals in (??) have no closed
form solution, Gaussian quadrature techniques are used to evaluate the likelihood, in which
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the expression in (??) is replaced by a weighted sum of the form

L =
NY
i=1

KX
k=1

wk


³
1
σε
φ(

hi−h∗i (vk;β)
σε

)1 (h∗i (vk;β) > 0)
´1(hi>0)

×
³
1 (h∗i (vk;β) ≤ 0) + Φ

³−h∗i (vi;β)
σε

´
1 (h∗i (vk;β) > 0)

´1(hi=0)
 , (67)

where {wk}Kk=1 are the weights and {vk}Kk=1 are the nodes at which the likelihood is evaluated,
and 1(·) denotes the indicator function. In the Monte Carlo experiments discussed in the
paper, we use a ten node specification.
We solve for h∗i using a bracketing algorithm.

50 Although bracketing algorithms are slow
compared to other algorithms for well behaved functions, the advantage of such an algorithm
is that it does not require use of derivatives, and is guaranteed to find a maximum regardless
of the curvature of the objective function.51 Further, this problem is greatly simplified by
the fact that this is a one dimensional maximization problem over a finite interval of the real
line between 0 and H.

12.2 CES Utility Specification

In the CES utility specification, the utility function is assumed to take the form

U(C, h, vi; η, ρ, c,H) = (1− η)(C − c− vi)
ρ + η(H − h)ρ. (68)

As such, hij (vi, β) takes the form

hij
¡
vi, η, ρ, c,H

¢
= H − yj + wjH − c− vi

wj + kwe
j

,

where e = 1
1−ρ and k =

³
η
1−η
´e
. It is further assumed that vi˜N(0, σ2v) and ε˜N(0, σ2ε).

Under these assumptions, letting

hij = H − yj + wjH − c

wj + kwe
j

,

the Hausman method likelihood of observing individual i working hi hours is

50For more info on bracketing algorithms, see Judd (1998), p. 95-96.
51Of course, it is not guaranteed to find a global maximum if the utility function is not strictly quasiconcave

or the budget constraint is not convex. When this method is applied to more general preferences and
budget constraints, multiple starting points must be used in order to be confident that the maximum that
the algorithm finds is indeed the global maximum.
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L(hi|hi > 0) =
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 .
where σvj =

σv
wj+kwej

, σεvj =
q
σ2vj + σ2ε and ρ = σvj/σεvj . The likelihood of observing

individual i working 0 hours is

L(hi|hi = 0) = Φ

µ−hi1
σv1

¶
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where Φ (m,n, ρ) denotes the cumulative distribution function for standard bivariate normal
variables with correlation ρ, cumulative over (−∞,m]× (−∞, n]. The overall likelihood of
observing the sample, then, is

NY
i=1

L(hi|hi > 0)1(hi>0)L(hi|hi = 0)1(hi=0), (71)

where 1 (·) denotes the indicator function. In this specification, all probabilities in the
likelihood are positive iff

¡
we
j+1 − we

j

¢ ¡
Hj −H

¢ ≥ 0∀Hj.
When estimating parameters of a direct utility function, the likelihood takes a form

analogous to the expressions in (??) and (67).

12.3 Quadratic Utility Specification

In the quadratic utility specification, the utility function is assumed to take the form

U(C, h, vi;β, γ, δ) = βh2 + γCh+ (δ + vi)h+ C. (72)
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As such, hij (vi, β) takes the form

hij (vi, β, γ, δ) =
−wj − γyj − (δ + vi)

2(γwj + β)
.

It is further assumed that vi˜N(0, σ2v) and ε˜N(0, σ2ε).
Under these assumptions, letting

hij =
−wj − γjy − δ

2(γwj + β)
,

the Hausman method likelihood of observing individual i working hi hours is
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where σvj =
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σ2vj + σ2ε and ρ = σvj/σεvj . The likelihood of observing

individual i working 0 hours is
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where Φ (m,n, ρ) denotes the cumulative distribution function for standard bivariate normal
variables with correlation ρ, cumulative over (−∞,m]× (−∞, n]. The overall likelihood of
observing the sample, then, is

NY
i=1

L(hi|hi > 0)1(hi>0)L(hi|hi = 0)1(hi=0), (75)
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where 1 (·) denotes the indicator function. In this specification, all probabilities in the
likelihood are positive iff 1 + γHj ≥ 0∀Hj.
When estimating parameters of a direct utility function, the likelihood takes a form

analogous to the expressions in (??) and (67).
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