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1 Introduction

Many important outcomes are binary such as program receipt, labor market status, and

educational attainment. These outcomes are frequently misclassified due to interviewer or

respondent error or for other reasons. It is a common misconception that measurement error

in a dependent variable does not lead to bias, but this requires classical measurement error.

Misclassification of a binary variable is necessarily non-classical measurement error, and thus

leads to bias. However, there are few general results on bias in binary choice models. Yet,

given the pervasiveness of misclassification in common data sources, it is important to know

whether we can still learn from contaminated data and which methods allow it. To address

this issue, we first examine the properties of binary choice models with measurement error

in the dependent variable. We then discuss the performance of several estimators designed

to account for misclassification. We rely on a combination of analytical results, simulations,

and results from an application to the Food Stamp Program.

Several papers that examine misreporting in surveys have found high rates of misclassi-

fication in binary variables such as participation in welfare programs (Marquis and Moore,

1990; Meyer, Mok and Sullivan, 2009; Meyer, Goerge and Mittag, 2015), Medicaid enroll-

ment (Call et al., 2008; Davern et al., 2009) and education (Black, Sanders and Taylor, 2003).

Bound, Brown and Mathiowetz (2001) provide an overview. In the case of program report-

ing, false negatives, i.e. recipients who fail to report receiving program benefits, are the

main problem, with rates of underreporting sometimes exceeding 50%. Measurement error

can badly bias substantive studies with binary outcomes such as those examining take-up of

government programs (e.g. Bitler, Currie and Scholz, 2003; Haider, Jacknowitz and Schoeni,

2003), labor market status (e.g. Poterba and Summers, 1995) or educational attainment (e.g.

Eckstein and Wolpin, 1999; Cameron and Heckman, 2001). A frequent cause of error besides

misreporting is subjective classification of a dependent variable, for example whether there

is a recession or not (e.g. Estrella and Mishkin, 1998), the presence of an armed civil conflict

(e.g Fearon and Laitin, 2003) or whether an individual is disabled or not (e.g. Beńıtez-Silva
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et al., 2004; Kreider and Pepper, 2008). Similarly, a proxy variable is often used instead of

the true variable of interest, such as arrests or incarcerations instead of crimes (e.g. Lochner

and Moretti, 2004). Another reason for misclassification is prediction error, for example, if

some observations of a variable are missing and imputed values are substituted. Moreover,

there is little ex ante reason to believe that misclassification is independent of the covari-

ates, not even conditional on the true value of the binary variable, though it could occur if

misclassification stems from coding errors or failure to link some records.

A few papers have analyzed the consequences of misclassification for econometric esti-

mates. For example, Bollinger and David (1997, 2001) and Meyer, Goerge and Mittag (2015)

examine how misclassification affects estimates of food stamp participation and Davern et al.

(2009) analyze Medicaid enrollment. They show that misclassification affects the estimates

of common econometric models and distorts conclusions in meaningful ways. From these

studies we know that misclassification can seriously alter estimates from binary choice mod-

els, but we know very little about the ways it affects estimates in general. This situation

is aggravated by the scarcity of analytic results on bias in binary choice models. Carroll

et al. (2006) and Chen, Hong and Nekipelov (2011) provide overviews of the literature on

measurement error in non-linear models and there is a small body of literature on misspec-

ification in binary choice models (e.g. Yatchew and Griliches, 1985; Ruud, 1983, 1986), but

general results or formulas for biases are scarce.

Thus, the literature has established that misclassification is pervasive and affects esti-

mates, but not how it affects them or what can still be done with contaminated data. This

paper characterizes the consequences of misclassification of the dependent variable in binary

choice models and assesses whether substantive conclusions can still be drawn from the ob-

served data and if so, which methods to do so work well. We first present a closed form

solution for the bias in the linear probability model that allows for simple corrections. For

non-linear binary choice models such as the Probit model, we decompose the asymptotic bias

into four components. We derive closed form expressions for three bias components and an
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equation that determines the fourth component. The formulas imply that if misclassification

is conditionally random, only the probabilities of misclassification are required to obtain the

exact bias in the linear probability model and an approximation in the Probit model. If mis-

classification is related to the covariates, additional information on this relation is required

to assess the (asymptotic) bias, but the results still imply a tendency for the bias to be in

the opposite direction of the sign of the coefficient.

Next, we examine whether our analytic results help to explain the bias found in empirical

applications and whether one can use them to interpret coefficient estimates from contam-

inated data. We conduct simulations and estimate models of food stamp receipt in two

unique data sets that include “true” food stamp receipt from administrative data along with

the survey reports. Overall, the results underscore that our formulas can be used to judge

whether substantive conclusions obtained from misclassified data are likely to be valid. They

show that the signs of coefficients are robust to a wide range of misclassification mechanisms

and that there is a tendency for the coefficients to be attenuated, though this result is not

expected to hold in all cases. The results suggest that in some cases one can learn about

coefficient signs from the contaminated data.

Finally, we evaluate six estimators that take misclassification into account to examine

whether it is feasible to obtain consistent parameter estimates from data with misclassifi-

cation. Several such estimators have been introduced in the literature (e.g. Bollinger and

David, 1997; Hausman, Abrevaya and Scott-Morton, 1998), but unless the true parameters

are known, it is impossible to know whether these estimators improve parameter estimates

or only change them. We use the same data with a measure of “truth”, and model food

stamp participation as above. If misclassification is conditionally random, it is feasible to

obtain consistent parameter estimates from the observed data. We find that incorporating

information on the misclassification rates greatly improves the robustness of the estimates

to misspecification. However, applying an estimator that assumes misclassification to be

conditionally random can make estimates substantively worse when this assumption is false.
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In such cases, one can still obtain consistent estimates if validation data or a model of mis-

classification is available. Our results suggest that such additional information is still likely

to improve parameter estimates even if it is not completely accurate.

In summary, our results underline that misclassification can lead to severe bias. Nonethe-

less, the observed data remain informative about true parameters, particularly when misclas-

sification is conditionally random or additional information on the misclassification model

is available. The next section introduces the models and discusses the bias in theory, while

section 3 examines it in practice using the matched survey data and simulations. Section

4 introduces consistent Probit estimators and evaluates their performance when misclassi-

fication is unrelated to the covariates (4.1) and when it is related to them (4.2). Section 5

concludes.

2 Bias Due to Misclassification of a Binary Dependent

Variable

We are concerned with a situation in which a binary outcome y is related to observed

characteristics X, but the outcome indicator is subject to misclassification. Let yTi be the

true indicator for the outcome of individual i and yi be the observed indicator that is subject

to misclassification. The sample size is N and NMC observations are misclassified, NFP of

which are false positives and NFN are false negatives. We define the probabilities of false

positives and false negatives conditional on the true response as

Pr(yi = 1|yTi = 0) = α0i

Pr(yi = 0|yTi = 1) = α1i
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We refer to them as the conditional probabilities of misclassification. Additionally, we define

a binary random variable M that equals one if the outcome of individual i is misclassified

mi =

{
0 if yTi = yi

1 if yTi ̸= yi

We consider two cases, the linear probability model and the Probit model. For the linear

probability model, E(yT |X) = Xβ, so one would like to run the following OLS regression

yTi = x′
iβ

LPM + εLPM
i

to obtain the K-by-1 vector β̂LPM . Using only the observed data yields

yi = x′
iβ̃

LPM + ε̃LPM
i

The Probit model can be motivated by a latent variable yT∗
i such that

yTi = 1{yT∗
i = x′

iβ + εi ≥ 0} (1)

where εi is drawn independently from a standard normal distribution and β is the K-by-1

coefficient vector of interest. Extending our results to other binary choice models in which εi

is drawn from a different distribution is straightforward. Estimating a Probit model using the

observed indicator yi instead of yTi yields ˆ̃β, which is potentially inconsistent. Little is known

about the effects of measurement error in non-linear models (see Carroll et al., 2006). While

some of the papers mentioned above propose consistent estimation strategies and show that

ignoring the problem leads to inconsistent estimates, they do not discuss the nature of this

inconsistency. Hausman, Abrevaya and Scott-Morton (1998) assume that the probabilities

of false negatives and false positives conditional on the true response are constants for all

individuals, i.e. α0i = α0 and α1i = α1 for all i. We refer to this kind of misclassification
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as “conditionally random”, because conditional on the true value, yTi , misclassification is

independent of the covariates X. Hausman, Abrevaya and Scott-Morton (1998) show that

under this assumption the marginal effects in the observed data are proportional to the true

marginal effects

∂ Pr(y = 1|x)
∂x

= (1− α0 − α1)f(x
′β)β (2)

where f() is the derivative of the link function (e.g. the normal cdf in the Probit model), so

that f(x′β)β are the true marginal effects. As long as α0 + α1 < 1, the marginal effects are

attenuated: they are smaller in absolute value, but retain the correct signs.

If one has consistent estimates of the marginal effects in the observed data, equation (2)

implies that they are all attenuated proportionally, which suggests that inference based on

coefficient ratios may be valid. If one also has consistent estimates of the probabilities of

misclassification, α̂0 and α̂1, one can use (1−α̂0−α̂1)
−1 ̂∂ Pr(y=1|x)

∂x
to consistently estimate the

true marginal effects. However, while estimating the marginal effects in the observed data

is often possible using semi- or non-parametric estimators, we show below that using the

Probit marginal effects from the observed data in (2) usually yields inconsistent estimates.

Section 3 discusses this further and examines the extent to which equation (2) is useful in

practice.

2.1 Bias in the Linear Probability Model

Measurement error in binary variables is a form of non-classical measurement error (Aigner,

1973; Bollinger, 1996). The bias in OLS coefficients when the dependent variable is subject

to non-classical measurement error is the coefficient in the (usually infeasible) regression

of the measurement error on the covariates (Bound, Brown and Mathiowetz, 2001). Our

dependent variable is binary, so the measurement error takes the following simple form:

ui = yi − yTi =


−1 if i is a false negative

0 if i reported correctly

1 if i is a false positive
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Consequently, the coefficient in this OLS regression X (if it were feasible) would be:

δ̂ = (X ′X)−1X ′u (3)

δ̂ can only be zero if the measurement error is uncorrelated with X, which is unlikely: If a

variable is a relevant regressor, Pr(y = 1) is a function of X. Since u = −1 can only occur if

y = 1, this creates a dependence between u and X.1 Equation (3) implies that the coefficient

in an OLS regression of the misclassified indicator on X, ˆ̃βLPM , is β̂LPM + δ̂. So the bias is

E( ˆ̃βLPM)− βLPM = E(δ̂) (4)

The measurement error only takes on three values, so equation (3) simplifies to

δ̂ = (X ′X)−1(NFP x̄FP −NFN x̄FN) = N(X ′X)−1

(
NFP

N
x̄FP − NFN

N
x̄FN

)
(5)

where x̄FP and x̄FN are the means of X among the false positives and false negatives.

Appendix A provides more detail on the derivation. Consequently in expectation2

E(δ̂) = N(X ′X)−1[ Pr(y = 1, yT = 0)E(X|y = 1, yT = 0)

− Pr(y = 0, yT = 1)E(X|y = 0, yT = 1)] (6)

That is, the bias in ˆ̃βLPM depends on the difference between the conditional means of X

among false positives and false negatives where these conditional means are weighted by the

probability of observing a false negative or positive. The bias is this vector of differences

pre-multiplied by the inverse of the covariance matrix of the data.

Consequently, misclassifying the dependent variable from 1 to 0 at higher values of a

particular variable, while holding everything else fixed, decreases the estimated coefficient

1However, if misclassification conditional on yT depends on X in a peculiar way, X ′u can still be 0.
2This assumes that X is non-stochastic. The extension to the stochastic case is straightforward.
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on that particular variable, while misclassifying it from 0 to 1 increases it. The opposite

effect occurs at lower values of the variable. Misclassifying more observations amplifies this

effect. The bias can only be zero in knife-edge cases in which the expression in brackets is

0. Neither equal probabilities of misclassification nor (conditional) independence of X and

misclassification are sufficient for the bias to be zero. Equation (6) only depends on the

probabilities of misclassification and the conditional means of the covariates, so one only

needs these quantities (or an estimate of the expectation of δ̂) to correct the bias or assess

its likely direction and magnitude.

If the conditional probabilities of misclassification are constants as in Hausman, Abrevaya

and Scott-Morton (1998), the results above simplify to E( ˆ̃βLPM
k ) = (1−α0−α1)β

LPM
k for the

slope coefficients.3 So if the true model is a linear probability model and misclassification is

not correlated with X, knowing the conditional probabilities of misclassification is enough

to correct both coefficients and marginal effects.

2.2 Asymptotic Bias in the Probit Model

No general result on the consequences of measurement error in the dependent variable exists

for non-linear models. We first show that misclassification of the dependent variable is

equivalent to a specific form of omitted variable bias. We then use results on the effect of

omitting variables from Yatchew and Griliches (1984, 1985) to decompose the asymptotic

bias due to misclassification. The results below are for the Probit model, but the extension

to other binary choice models such as the Logit is straightforward. The true data generating

process without misclassification is assumed to be given by equation (1). Thus, with mi the

indicator of misclassification, the data generating process with misclassification is

yi =

{
1{x′

iβ + εi ≥ 0} if mi = 0

1{x′
iβ + εi ≤ 0} if mi = 1

⇔

3For the intercept: E( ˆ̃βLPM
0 ) = α0 + (1− α0 − α1)β

LPM
0 . See appendix A for proof.
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yi =

{
1{x′

iβ + εi ≥ 0} if mi = 0

1{−x′
iβ − εi ≥ 0} if mi = 1

(7)

Therefore, the true data generating process has the following latent variable representation:

y∗i = (1−mi)(x
′
iβ + εi) +mi(−x′

iβ − εi) ⇔

y∗i = x′
iβ + εi︸ ︷︷ ︸

Well-Specified Probit Model

−2mix
′
iβ − 2miεi︸ ︷︷ ︸

Omitted Variable

(8)

The first two terms form a well specified Probit, because εi is not affected by misclassification,

so it is still a standard normal variable. We can decompose each of the omitted variable terms

into its linear projection on X and deviations from it:

−2mix
′
iβ = x′

iλ+ νi

−2miεi = x′
iγ + ηi

(9)

Substituting this back into the equation (8) gives:

y∗i = x′
i (β + λ+ γ)︸ ︷︷ ︸
biased coefficient

+ εi + νi + ηi︸ ︷︷ ︸
misspecified error term

= x′
iβ̃ + ε̃i (10)

Equation (10) implies that the observed data do not conform to the assumptions of a Probit

model unless ε̃i is drawn independently from a normal distribution that is identical for all i.

While ε̃ is uncorrelated with X and has a mean of zero by construction, it is unlikely to have

constant variance and cannot come from a normal distribution.4 Consequently, running a

Probit on the observed data does not yield consistent estimates of the marginal effects in the

observed data, so that using equation (2) to obtain estimates of the true marginal effects is

inconsistent.

In summary, equation (10) highlights three violations of the assumptions of the original

Probit model: First, the linear projection of the latent variable is Xβ̃ instead of Xβ. Second,

4That they cannot be normal can be seen from the fact that the omitted variables have point mass at 0.
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the variance of the misspecified error term ε̃ is different from the variance of the true error

term ε. Finally, ε̃ is not drawn from a normal distribution that is identical for all observations.

The next sections discuss the implications of the violation of these assumptions for maximum

likelihood estimates of β. We start by deriving an expression for the estimate of β̃ that

one would obtain if ε̃ were a regular iid normal error term. We then apply results from

the literature on functional form misspecification in binary choice models (Yatchew and

Griliches, 1985) to derive how parameter estimates of a Probit model differ from β̃ in a

second step.

2.2.1 Bias in the Linear Projection

The first component of the asymptotic bias is the result of the coefficients on X incorporating

the linear projection of the omitted terms. The linear projection has two parts that are

analogous to the two bias terms Bound et al. (1994) derive for linear models. The first

term arises from a relation between misclassification and the covariates X. The second part

stems from a relation of misclassification and the error term ε. The familiar linear projection

formula gives

λ̂ = −2(X ′X)−1X ′SXβ (11)

where S is an N -by-N matrix with indicators for misclassification on the diagonal. Equation

(11) shows that λ̂ can be interpreted as minus twice the coefficient on X when regressing

a variable that equals the linear index Xβ for misclassified observations and 0 for correctly

reported observations on X. Under the usual Probit assumptions, N−1X ′X converges to

the uncentered covariance matrix of X. Let plim
N→∞

N−1X ′X = Q. Additionally, we define the

probability limit of the uncentered covariance matrix of X among the misclassified observa-

tions as plim
N→∞

N−1
MC(X

′X|M = 1) = QMC . A typical element (r, c) of X ′SX is
∑N

i=1 xrimixci,

whereas a typical element (r, c) of X ′X is
∑N

i=1 xrixci. From the sums in X ′X, S selects only
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the xi that belong to misclassified observations, so that

plim
N→∞

1

N
X ′SX = plim

N→∞

NMC

N
plim
N→∞

N−1
MC (X ′X|M = 1) = Pr(M = 1)QMC

i.e. it converges to the uncentered covariance matrix of X among those that are misclassified

multiplied by the probability of misclassification. Thus, the probability limit of λ̂ is

plim
N→∞

λ̂ = −2Pr(M = 1)Q−1QMCβ (12)

Equation (12) shows that the asymptotic bias from this source cannot be zero for all coef-

ficients if there is any misclassification, i.e. if Pr(M = 1) ̸= 0. Otherwise, both right hand

side matrices are positive definite, so lambda has positive rank, i.e. it contains non-zero

elements. Thus, while some elements of λ can be 0 in special cases, misclassification always

induces bias in some coefficients. Multiplication by −2Pr(M = 1) creates a tendency for the

asymptotic bias to be in the direction opposite from the sign of the coefficient, which reduces

to the rescaling effect if misclassification is not related to X. This effect can be amplified or

reduced by Q−1QMC , which is due to the relation of misclassification to X. Both matrices

are positive definite, so the diagonal elements are positive, which creates a tendency for λ

and β to have different signs, causing the asymptotic bias to be in the opposite direction

from the sign of the coefficient. However, unless the off-diagonal elements are zero, bias from

other coefficients “spreads” and may reverse this tendency.

In summary, the magnitude of the first component of the asymptotic bias depends on

three things: all else equal, it is larger if the probability of misclassification is larger, if

misclassification comes from a wider range of X, or is more frequent among extreme values

of X. The second point follows from the fact that in such cases the conditional covariance

matrix is large relative to the full covariance matrix. The third effect is due to the covariance

matrices being uncentered, so if the mean of X among the misclassified observations differs

much from that in the general sample, the asymptotic bias will be larger.
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The second component of the bias in the linear projection stems from the fact that

misclassification may create a relation between X and the error term. Using the standard

formula for linear projections, equation (9) and the definition of S from above, it is:

γ̂ = −2(X ′X)−1X ′Sε (13)

γ̂ can also be interpreted as minus twice the regression coefficient on X when regressing a

vector that contains εi for misclassified observations and zeros for all other observations on

X. Using exactly the same arguments as above yields

plim
N→∞

γ̂ = −2Pr(M = 1)Q−1plim
N→∞

N−1(X ′ε|M = 1) (14)

While plim
N→∞

N−1X ′ε = 0 by assumption, this restriction does not determine the conditional

covariance between X and the error term, plim
N→∞

N−1(X ′ε|M = 1). The conditional covariance

and thus plim
N→∞

γ̂ are 0 if besides the assumed independence between X and ε it is also true

that ε and M are independent. If X is independent of ε and M and the model includes

an intercept, this bias component does not affect the slope coefficients. However, if the

probability of misclassification depends on the true value yT , because the determinants of

false positives and false negatives differ, the bias is unlikely to be 0. In this case, M can only

be independent of X or ε and is likely to depend on both.

2.2.2 Rescaling Bias

The second effect of misclassification is a rescaling effect that always occurs when misspeci-

fication affects the variance of the error term in Probit models. The coefficients of the latent

variable model are only identified up to scale, so one normalizes the variance of the error term

to one, which normalizes the coefficients to β/σε. Consequently, misspecification that affects

the variance of the error term leads to coefficients with the wrong scale. In the absence of

the additional asymptotic bias discussed below (i.e. if ε̃ were iid normal), estimating (10)
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by a Probit model gives

plim
N→∞

ˆ̃β =
β̃

SD(ε̃)
=

β + λ+ γ

SD(ε+ ν + η)
≡ β̄ (15)

One may expect the error components due to misclassification to increase the variance of

the error term, i.e. SD(ε̃) > SD(ε), so the rescaling will tend to result in an asymptotic

bias towards zero. However, the variance can decrease if misclassification depends on ε. The

rescaling factor is the same for all coefficients, so it does not affect their relative magnitudes.

2.2.3 Bias Due to Misspecification of the Error Distribution

If ε̃ were iid normal with constant variance, estimating equation (10) by a Probit model

would yield a consistent estimate of β̄ as given by (15). However, additional asymptotic bias

may arise from heteroskedasticity or differences between the higher order moments of the

distribution of the misspecified error term and those of the normal distribution. Ruud (1983,

1986) characterizes this bias, but closed form solutions do not exist. Adapting a result from

Yatchew and Griliches (1985) provides an implied formula for the exact asymptotic bias.

Taking the probability limit of N−1 times the first order conditions of the log-likelihood

function, the parameter estimate converges to the vector b that solves

∫
fX(xj)

x′
jϕ(x

′
jb)

Φ(x′
jb)(1− Φ(x′

jb))

[
Fε̃|X=xj

(−x′
jβ̄)− Φ(−x′

jb)
]
dxj = 0 (16)

where Fε̃|X=xj
is the conditional cumulative distribution function of ε̃/V ar(ε̃), i.e. the mis-

specified error term normalized to have (unconditional) variance 1, evaluated at X = xj.

Consequently, Fε̃|X=xj
(−x′

jβ̄) provides the probability that ε̃i/V ar(ε̃) is smaller than −x′
jβ̄

in the sub-population with a specific value of the covariates (X = xj). Thus, it provides the

probability of observing y = 1 when drawing from the sub-populations with covariates equal

to xj. Note that the left hand side of (16) is the first derivative of a concave function, so the

equation has a unique solution.
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If Fε̃|X is a normal cdf with the same variance for all values of X, b = β̄ solves (16) so

that (15) gives the exact probability limit of the coefficient estimate. Unfortunately, (16) has

no closed form solution and can only be solved numerically for specific cases of Fε̃|X which

is usually unknown. Note, however, that the unconditional distributions, Fε̃ and Φ have the

same first and second moments by construction. Consequently, (asymptotic) deviations of

the parameter estimates from β̄ only occur due to a dependence of the first two moments

of Fε̃ on X (e.g. heteroskedasticity) and differences in higher order moments of the two

distributions (so we refer to this bias component as the “higher order bias”).

If one has reasons to believe that the bias due to functional form misspecification is

small (such as in Ruud, 1983, 1986), equation (15) provides a tractable approximation to

the inconsistent coefficients and thereby makes the asymptotic bias easier to analyze in

practice. We find the effect of misspecification of the error term to be small in Monte Carlo

simulations, but the bias can become large if misclassification depends heavily on ε or the

true value of y. The web appendix discusses how to further assess the likely direction and

severity of this component of the asymptotic bias and conditions under which one can expect

(15) to provide a good approximation.

3 The Bias in Practice

We use administrative data matched to two surveys to illustrate the applicability of the

results from the previous section and examine what can still be learned from the observed

data. Misclassification is correlated with the covariates in the matched data, but we also

conduct a Monte Carlo study in which we induce conditionally random misclassification in

our matched sample. Finally, we use simulated data to assess the size of the components of

the bias in the Probit model in more detail.
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3.1 Bias from Misclassification in Models of Food Stamp Take-up

We use the data employed in Meyer, Goerge and Mittag (2015): the 2001 American Com-

munity Survey (ACS) and the 2002-2005 Current Population Survey Annual Social and

Economic Supplement (CPS ASEC) matched to administrative food stamp data from Illi-

nois and Maryland. We successfully link more than 90 percent of households in the ACS and

more than 70 percent of households in the CPS to the administrative data. We estimate the

probability of a household being linked and use inverse probability weighting (Wooldridge,

2007) to adjust the household weights in order to keep the sample representative of the

population in the two states. We weight to make the analysis comparable to common appli-

cations and allow the reader to interpret the estimates and biases as population summary

statistics. We treat the administrative food stamp indicator as truth, even though it may

contain errors, e.g. due to an imperfect match to the survey data. Given that there should

be few mistakes in the administrative records and the match rate is high, this assumption

seems plausible. Additionally, most of the analysis below does not require this assumption -

the survey data can be considered a version of the administrative data with misclassification

even if neither of them represent “truth”. We restrict the sample to matched households

with income less than 200% of the federal poverty line and estimate simple Probit and linear

probability models of food stamp take-up with three covariates: a continuous poverty index

(income/poverty line) as well as dummies for whether the householder is 50 or older and

whether the household is in Maryland.5 Misreporting is related to all three variables in both

surveys. False negatives are more likely for higher income households, while both households

in Maryland and those with a head over the age of 50 are less likely to be false positives and

more likely to be false negatives. See Meyer, Goerge and Mittag (2015) for further details

on the data, the matching process and the determinants of misreporting.

The closed form solutions for the bias in the linear probability model are straightforward

5Income is also known to be measured with error, but we focus on the consequences of measurement error
in the dependent variable here.

15



Table 1: Estimated Bias in the Linear Probability Model, ACS

β̂LPM β̂LPM Bias in Bias in (4)-(3):
Matched Survey MC Study Survey Bias due to
Data Data (random MR) Data correlation

(1) (2) (3) (4) (5)

Poverty index -0.0018 -0.0019 -27.94% 5.56% 33.50%
(0.0001) (0.0001)

Age≥50 -0.1166 -0.1046 -28.93% -10.29% 18.64%
(0.0145) (0.0133)

Maryland -0.0034 -0.0217 -10.03% 538.24% 548.26%
(0.0157) (0.0141)

Note: Sample size: 5945 matched households from IL and MD with income less than 200%
of the federal poverty line. All analyses include a constant term (not reported) and are
conducted using household weights adjusted for match probability. All estimated biases are
in % of the coefficient from the matched data. The first two columns report OLS coefficients
using FS receipt according to the administrative data (column 1) and according to survey
reports (column 2) as the dependent variable. In the MC design in column 3, the depen-
dent variable is administrative FS receipt with misreporting induced with the misreporting
probabilities observed in the actual sample (Pr(FP)=0.02374 and Pr(FN)=0.2596), but in-
dependent of the covariates conditional on true receipt. 500 replications are performed and
we report the average bias in %.

to analyze. The results in table 1 for the ACS and table 2 for the CPS conform to the

expectations from section 2.1. The first column presents the “true” coefficient estimate from

the matched data and the second column contains the inconsistent estimates from the survey.

In the simulations in column 3, the dependent variable is administrative food stamp receipt

with misclassification induced with the probabilities observed in the actual samples, but

independent of the covariates conditional on true receipt. This exercise leaves the remainder

of the data unchanged, so it allows us to focus on conditionally random misclassification. We

perform 500 replications. The factor of attenuation in column 3 is very similar across slopes.

In both surveys, it is close to α0+α1 as expected. The coefficient on the Maryland dummy in

the ACS is an exception due to the fact that it is imprecisely estimated and indistinguishable

from 0. Column 4 shows that in the survey data, where misclassification is related to the

covariates, the factor differs substantially between coefficients and is different from α0 + α1.

Since the only difference in the data used for column 3 and 4 is the correlation between
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Table 2: Estimated Bias in the Linear Probability Model, CPS

β̂LPM β̂LPM Bias in Bias in (4)-(3):
Matched Survey MC Study Survey Bias due to
Data Data (random MR) Data correlation

(1) (2) (3) (4) (5)

Poverty index -0.0023 -0.0021 -42.18% -8.70% 33.48%
(0.0002) (0.0001)

Age≥50 -0.1264 -0.0985 -41.79% -22.07% 19.72%
(0.0174) (0.0151)

Maryland -0.0937 -0.0706 -42.60% -24.65% 17.95%
(0.0184) (0.0156)

Note: Sample size: 2791 matched households from IL and MD with income less than 200%
of the federal poverty line. All analyses include a constant term (not reported) and are
conducted using household weights adjusted for match probability. All estimated biases are
in % of the coefficient from the matched data. The first two columns report OLS coefficients
using FS receipt according to the administrative data (column 1) and according to survey
reports (column 2) as the dependent variable. In the MC design in column 3, the depen-
dent variable is administrative FS receipt with misreporting induced with the misreporting
probabilities observed in the actual sample (Pr(FP)=0.03271 and Pr(FN)=0.3907), but in-
dependent of the covariates conditional on true receipt. 500 replications are performed and
we report the average bias in %.

misclassification and the covariates, the difference between the columns is an estimate of the

effect of the correlation of misclassification with the covariates. This difference is presented

in column 5 and in our case biases all coefficients away from 0. Thus, it is in the opposite

direction of the estimated bias in the random case, i.e. the two effects partly offset each other.

Consequently, the estimated bias in the correlated case is smaller for all coefficients except

for the imprecise Maryland dummy in the ACS. In both the random and the correlated case,

the estimated bias is always equal to δ̂ as defined by equation (3) (results not presented).

Table 3 examines to what extent equation (2) allows us to learn something from the biased

coefficients. The first three columns present coefficient ratios, since equation (2) suggests

that if misclassification is conditionally random, the constant of proportionality may cancel.

Coefficient ratios are informative about the relative magnitude of the coefficients and, if the

sign of one coefficient is known, their direction. The table contains estimates of the “true”

coefficient ratios from the matched data (column 1), the average estimated bias in percent
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of the true ratio from simulating conditionally random misclassification as described above

(column 2) as well as the difference to the ratios from the survey data (column 3). If the

conditional probabilities of misclassification are known, one can also multiply the estimated

coefficients by the constant of proportionality, (1 − α0 − α1)
−1 to obtain estimates of the

true coefficients. The last two columns examine whether this reduces the bias in simulations

where misclassification is conditionally random (column 4) and in the estimates from the

survey data, where misclassification is related to the covariates (column 5). Columns 2 and

5 show that if misclassification is indeed not related to the covariates, ratios and scaled up

coefficients indicate the right relative magnitudes and signs of the true parameters. However,

a small difference remains for all coefficients, which becomes sizable for imprecisely estimated

coefficients. As one would expect, the results in columns 3 and 5 show that both approaches

perform poorly if the assumption that misclassification is conditionally random fails. As we

have seen above, the correlation of misclassification with the covariates partly offsets the

attenuation effect in our application, so that the rescaling factor under the assumption of no

correlation induces an upward bias.

Table 3: What Can Be Learned From Survey Coefficients, LPM

Coefficient Ratios Bias Rescaled
(relative to age coefficient) Marginal Effects

Matched Bias in Bias in in MC in
Data MC Study Survey Study Survey

(1) (2) (3) (4) (5)

ACS
Poverty index 0.0154 1.41% 17.67% 0.37% 36.84%
Age≥50 - - - -0.85% 39.48%
Maryland 0.0292 12.82% 611.46% 25.95% 39.63%

CPS
Poverty index 0.0182 3.51% 17.17% -0.29% 71.43%
Age≥50 - - - 0.97% 73.50%
Maryland 0.7413 5.56% -3.31% -0.44% 73.51%

Note: See note Table 1 and 2

We perform the same analyses for the Probit models and present the results in tables
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4-6. The third column of table 4 and 5 shows that, as in the linear probability model,

coefficients are attenuated by a similar factor if misclassification is conditionally random and

the coefficient is reasonably precisely estimated. The factor of attenuation is different from

α0 + α1, because coefficients and marginal effects are not equal in the Probit model. As

discussed above, equation (2) does not apply to Probit estimates due to the higher order

bias from misspecification of the distribution of the error term. So, contrary to the linear

probability model, this proportionality may not generalize to other applications.

Table 4: Estimated Bias in the Probit Model, ACS

β̂ β̂ Bias in Bias in (4)-(3):
Matched Survey MC Study Survey Bias due to
Data Data (random MR) Data Correlation

(1) (2) (3) (4) (5)

Poverty index -0.0060 -0.0071 -20.51% 18.33% 38.84%
(0.0004) (0.0005)

Age≥50 -0.4062 -0.4167 -22.15% 2.58% 24.74%
(0.0512) (0.0543)

Maryland -0.0187 -0.0978 -9.08% 422.99% 432.07%
(0.0548) (0.0582)

Note: Sample size: 5945 matched households from IL and MD with income less than 200%
of the federal poverty line. All analyses include a constant term (not reported) and are
conducted using household weights adjusted for match probability. All biases are in % of
the coefficient from the matched data. The first two columns report Probit coefficients using
FS receipt according to the administrative data (column 1) and according to survey reports
(column 2) as the dependent variable. In the MC design in column 3, the dependent variable
is administrative FS receipt with misreporting induced with the misreporting probabilities
observed in the actual sample (Pr(FP)=0.02374 and Pr(FN)=0.2596), but independent of
the covariates conditional on true receipt. 500 replications are performed and we report the
average bias in %.

Column 4 underlines that both the proportionality and the attenuation only apply if

misclassification is conditionally random: The difference between survey estimates and those

in column 1 differs between coefficients and is sometimes positive, indicating a bias away

from zero. It is again smaller in absolute value than the estimated bias without correlation.

Column 5 confirms that the effect of correlation is in the opposite direction of the estimated

bias in the conditionally random case, so the two effects partly offset each other. This
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Table 5: Estimated Bias in the Probit Model, CPS

β̂ β̂ Bias in Bias in (4)-(3):
Matched Survey MC Study Survey Bias due to
Data Data (random MR) Data Correlation

(1) (2) (3) (4) (5)

Poverty index -0.0074 -0.0083 -32.47% 12.16% 44.63%
(0.0005) (0.0006)

Age≥50 -0.4297 -0.3992 -32.17% -7.10% 25.07%
(0.0614) (0.0682)

Maryland -0.3338 -0.3189 -33.15% -4.46% 28.69%
(0.0736) (0.0808)

Note: Sample size: 2791 matched households from IL and MD with income less than 200%
of the federal poverty line. All analyses include a constant term (not reported) and are
conducted using household weights adjusted for match probability. All biases are in % of
the coefficient from the matched data. The first two columns report Probit coefficients using
FS receipt according to the administrative data (column 1) and according to survey reports
(column 2) as the dependent variable. In the MC design in column 3, the dependent variable
is administrative FS receipt with misreporting induced with the misreporting probabilities
observed in the actual sample (Pr(FP)=0.03271 and Pr(FN)=0.3907), but independent of
the covariates conditional on true receipt. 500 replications are performed and we report the
average bias in %.

explains why Meyer, Goerge and Mittag (2015) find that the bias in models of program

take-up is relatively small given the extent of misreporting in the data.

Table 6: What Can Be Learned From Survey Coefficients, Probit

Coefficient Ratios Observed Bias in Rescaled
(relative to age coefficient) Marginal Effects Marginal Effects

Matched Bias in Bias in Matched Survey MC Survey
Data MC Study Survey Data Data Study Data

(1) (2) (3) (4) (5) (6) (7)

ACS
Poverty index 0.0148 2.19% 15.35% -0.0018 -0.0017 1.39% 38.89%
Age≥50 - - - -0.1033 -0.1164 -0.58% 39.50%
Maryland 0.0460 9.40% 409.82% -0.0242 -0.0053 3.66% 39.67%

CPS
Poverty index 0.0172 4.84% 20.73% -0.0019 -0.0021 1.98% 73.68%
Age≥50 - - - -0.0902 -0.1214 2.76% 73.50%
Maryland 0.7768 6.32% 2.84% -0.0721 -0.0943 0.95% 73.37%

Note: See note Table 1 and 2
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Table 6 examines the implications of equation (2) for Probit models. Columns 1-3 and

6-7 are the equivalent of table 3, i.e. they present coefficient ratios and rescaled marginal

effects. Columns 4 and 5 contain Probit estimates of the observed marginal effects in the

matched data and the survey data, since, contrary to the linear probability model, coefficients

and marginal effects differ. Contrary to the linear probability model, using a Probit on

the survey data does not yield consistent estimates of the observed marginal effects in the

presence of misclassification due to the higher order bias. Nonetheless, the results in table

6 are qualitatively similar to the results for the linear probability model in table 3: only a

small difference remains in the conditionally random cases in columns 2 and 6, suggesting

that the bias from functional form misspecification is small here. However, both ratios and

rescaled coefficients are substantively misleading if misclassification is related to X.

Overall, the results in this section show that the results from section 2 describe the

(asymptotic) bias well in practice, which makes the formulas useful to interpret estimates

obtained from contaminated data. The results in tables 3 and 6 show that examining co-

efficient ratios and scaling-up marginal effects can be very useful to learn something from

data that is subject to misclassification if it is conditionally random. However, one should

be cautious with this assumption, as using results for the conditionally random case when

this assumption fails can be severely misleading and make matters worse than if the problem

of misclassification were ignored.

3.2 Assessing the Bias and its Components in Simulations

In order to obtain more evidence on the determinants and relative sizes of the bias com-

ponents derived in part 2.2, we perform three simulation studies that allow us to change

the factors that cause the bias components. We generate data with a similar structure

as the observed data. In particular, we generate two covariates (x1 and x2) from nor-

mal distributions with variance 1. The mean is 0 for x1 and 0.1x1 for x2, so they are

mildly correlated. The dependent variable is generated according to the Probit model
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yT = 1{a + 0.5x1 + 0.5x2 + e ≥ 0} where e is drawn from a standard normal distribu-

tion. The intercept a is chosen such that the mean of yT is always 0.25. We generate

misclassification according to m = 1{c + bx1 + eMC ≥ 0} where eMC is another standard

normal variable. Note that misclassification is related to x2 only through the correlation

between x1 and x2.

In the first two setups, we increase the level of misclassification from 0% to 50% holding

everything else constant. In the first setup, misclassification is not related to x1, while in the

second setup b is constant at 0.25, creating a modest correlation. In the third setup, we hold

the level of misclassification fixed at 30% and increase b from -1 to 1, so that the correlation

between x1 and m increases from roughly -0.5 to 0.5. In all cases we take 100 equally

spaced grid points over the parameter space. At each point, we draw 100 samples of 10,000

observations and run a Probit on yT to obtain β̂ and on the data with misclassification

(yielding β̂MC). We record the difference between the two estimated coefficient vectors

(β̂− β̂MC) as well as the bias due to λ̂ as given by equation (11), γ̂ as given by (13) and the

rescaling bias implied by (15): (β̂MC + λ̂+ γ̂)/SD(ε̂+ ν̂ + η̂)− (β̂MC + λ̂+ γ̂). We calculate

the higher order bias as the “residual” difference, i.e. (β̂MC − λ̂− γ̂) · SD(ε̂+ ν̂ + η̂)− β̂.

Figure 1: MC Design 1 - Uncorrelated Misclassification (b=0)

−
10

0
−

80
−

60
−

40
−

20
0

B
ia

s 
in

 %

0 .1 .2 .3 .4 .5
Fraction Misreported

x1 x2

as % of true coefficient
Coefficient Bias

−
10

0
−

80
−

60
−

40
−

20
0

B
ia

s 
in

 %

0 .1 .2 .3 .4 .5
Fraction Misreported

Lambda Gamma
Rescaling Higher Order

as % of true coefficient
Bias Decomposition for x1

Figures 1-3 show the bias of the two coefficients in the left panel and the decomposition

for the coefficient on x1 into the four components in the right panel. Overall, the results

are as expected based on our analytic results. The left panel of figure 1 shows that in the
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uncorrelated case, the bias is the same for both coefficients (in relative terms) and always

between 0% and -100%, i.e. both coefficients are always attenuated. It also shows that the

bias is not linear in α0 + α1, which underlines that equation (2) is a relation between true

values and not between Probit estimates. The bias decomposition in the right panel shows

why this is the case: In addition to λ̂, which is linear and has a slope of -2 as predicted by

(12), there is a rescaling bias that is non-linear in the level of misclassification.

Figure 2: MC Design 2 - Correlated Misclassification (b=0.25)
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The main difference in figure 2, where misclassification is correlated with x1, is that

the coefficient on x1 is less severely biased. As in the food stamp data, the bias due to

correlation reduces the bias from λ̂, but is not strong enough to override it. This finding

does not generalize. If the (negative) correlation is stronger, the coeffcient can be biased

away from zero. If the correlation is positive, the bias is more severe than in figure 1, so

that the coeffcient can change its sign. The bias decomposition is similar to the previous

case, but λ̂ is not linear in the fraction of misclassified observations. The difference in the

rescaling bias is mainly due to its numerator (which is less attenuated and thus bigger in

absolute value).

The key insight from the results in figure 3 is that most of the regularities we have stressed

can be overturned if there is a strong relation between the covariates and misclassification.

With extreme negative correlation, the bias exceeds -100%, so that the coefficient changes

sign. For high positive values of the correlation the bias from λ̂ is away from zero. If the
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Figure 3: MC Design 3 - 30% Misclassification, Increasing Correlation With x1
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off-diagonal elements in (12) are negative and large relative to the diagonal elements, some

components of λ̂ can become positive and cause bias away from 0. Thus, coefficients are

not always attenuated. However, while not always true, coefficients tend to retain their sign

and are attenuated for a range of reasonable correlations even at a relatively high level of

misclassification (30%).

The results from the last simulation raise the question in how far the patterns in these

simulations are artifacts of the simulation setups. In order to assess this question, we con-

ducted several additional simulation designs, the results are available upon request. Our

misclassification model generates misclassification that is independent of ε, so γ̂ is zero in

all three cases. However, if misclassification depends on both X and ε, γ̂ becomes non-zero

and behaves as one would expect based on equation (13). Similarly, the higher order bias

is small in all three cases here, but can become noticeable, for example when the models

for false positives and false negatives differ. It becomes sizable in our simulations when

misclassification has an asymmetric effect on the distribution of ε, i.e. if the probability of

misclassification for large values of the error term in the outcome equation is higher or lower

than for small values. This is in line with the symmetric weighting function in equation (16),

which suggests that symmetric deviations of Fε|X and Φ may average out over the sample.

In summary, the results in this section underline several useful conjectures suggested by

the analytic results, which can be used to interpret estimates from data with misclassification
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and assess the robustness of substantive conclusions. However, they also verify that there

are exceptions to the regularities we find. While the usual caution regarding generalizations

from simulations and particular cases applies, a robust finding is that slope coefficients only

change sign if misclassification is strongly related to the covariates or ε in particular ways:

none of the coefficients in any of our applications changes sign, and it only happens for some

extreme cases in the Monte Carlo studies. In addition, one of the components of the bias may

sometimes bias the coefficients away from zero, but an overall bias away from zero only seems

to arise in cases where M is highly correlated with X or ε. Thus, the coefficient estimates

tend to be attenuated, i.e. lie between 0 and the true coefficient. This is always the case

when misclassification is conditionally random, but can be overturned if it is strongly related

to X. If one can rule out such cases, the estimates can be interpreted as lower bounds for

the true coefficients and one may be able to infer the sign of the coefficients, which is often

of key interest.

4 Consistent Estimators

This section evaluates estimators for the Probit model that are consistent under different

assumptions. What is unique about our analysis is that we use the actual data for a common

use of binary choice models, and, more importantly, we know the true value of the dependent

variable from administrative data. We focus on the Probit model, because it is the most

common parametric model and other maximum likelihood estimators can be corrected in

similar ways.6 We use six different estimators: three estimators are only consistent under

conditionally random misclassification, and three are still consistent if misclassification is

related to X. After describing the estimators, which are all variants of estimators that have

been proposed elsewhere, section 4.1 evaluates their performance under conditionally random

misclassification and section 4.2 allows misclassification to be related to X.

6Section 3 shows that corrections for the linear probability model work well if an estimate of δ̂ is available,
so we do not examine corrections for the linear probability model.
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All estimators can be derived from equation (7), which implies that the probability

distribution of the observed outcome yi can be written as:

Pr(yi) = [α0i + (1− α0i − α1i)Φ(x
′
iβ)]

yi + [1− α0i − (1− α0i − α1i)Φ(x
′
iβ)]

1−yi

This immediately implies the log-likelihood function of the observed data:

ℓ(α, β) =
N∑
i=1

yiln (α0i + (1− α0i − α1i)Φ(x
′
iβ))+

(1− yi)ln (1− α0i − (1− α0i − α1i)Φ(x
′
iβ)) (17)

The parameters of this likelihood are not identified, as there are 2N +K parameters (two αs

for each observation plus theK-by-1 vector β). Hausman, Abrevaya and Scott-Morton (1998)

assume that the conditional probabilities of misclassification (α0i and α1i) are constants,

which reduces the number of parameters to K + 2: α0, α1 and β. They show that these

parameters are identified due to the non-linearity of the normal cdf as long as α0 + α1 < 1.

We refer to this estimator as the HAS-Probit. Their assumption that the probabilities of

misclassification are constants implies that α0 is the population probability of a false positive

and α1 is the population probability of a false negative. These probabilities or estimates of

them may be known from validation data or other out of sample information. Let α̃0 and

α̃1 denote such estimates. Our second estimator uses these estimates in (17) and maximizes

it with respect to β only. Poterba and Summers (1995) take a similar approach to a model

of labor market transitions. In our application, the probabilities can be considered known,

because they are either calculated within sample or are known from data on the whole

population. If this is not the case, one should estimate standard errors as in Imbens and

Lancaster (1994), because the usual standard errors are inconsistent (Hausman, Abrevaya

and Scott-Morton, 1998).

Meyer, Mok and Sullivan (2009) assume that α̃0 is small enough to be ignored and cal-

26



culate α̃1 as the ratio of the population weighted number of people who report receipt of a

program to the number of people who receive it according to administrative totals. While

assuming α̃0 = 0 is a likely misspecification, estimates of the needed ratio are often available

when separate estimates of α0 and α1 are not. Therefore, we also examine the performance

of the estimator that maximizes (17) with α0 constrained to 0 and α1 constrained to α̃1 esti-

mated as in Meyer, Mok and Sullivan (2009). All three estimators assume that, conditional

on truth, misclassification is independent of the covariates. The unconstrained HAS-Probit

teases out α̂0 and α̂1 from the observed binary responses, while the other two estimators

constrain these parameters based on outside information.

In many cases, the assumption that misclassification is conditionally random does not

hold. One can allow the misclassification probabilities to depend on X if one can predict

α0i and α1i. For example, such predictions could be obtained by using the parameters from

models of misclassification that use validation data (e.g. Meyer, Goerge and Mittag, 2015;

Marquis and Moore, 1990). As Bollinger and David (1997) show, using such predicted prob-

abilities in equation (17) and maximizing the resulting pseudo-likelihood with respect to β

yields consistent estimates. We refer to this estimator as the “predicted probabilities estima-

tor” and bootstrap standard errors to account for the estimation of first stage parameters.

The predicted probabilities estimator does not require access to the validation data used

to estimate the probabilities of misclassification. If both the validation data and the data

used to estimate the outcome model are available, one could estimate the misclassification

model and the outcome model jointly. Assuming that misclassification can be described by

single index models, the two models imply a system of 3 equations: One for the model of false

positives, a second equation for the model of false negatives and a third equation for the true

outcome of interest. We assume that the misclassification models are Probit models, which

yields a fully specified parametric system of equations that can be estimated by maximum

likelihood. The likelihood function is derived in appendix B and depends on three com-

ponents. Which components an observation contributes to depends on whether it contains
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yTi , xi or both. The observations with yTi , but not xi identify the misclassification models,

while those with xi, but not y
T
i identify the outcome equation in the predicted probabilities

estimator. The observations with both yTi and xi identify both the misclassification model

and the outcome model, so in principle they could be used to estimate the outcome model

directly. One may still want to estimate the full model, either because one is interested in

the misclassification model or because one considers the observations in the intersection to

be insufficient to estimate the parameters of interest (e.g. for reasons of efficiency or sample

selection). Such cases often arise if a small subset of the observations has been validated: the

validated observations allow estimation of the true outcome model and the misclassification

model while those that were not validated only identify the observed outcome model. We

examine an estimator for this setting that we refer to as the joint estimator with common

observations. In other cases, such as those discussed by Bollinger and David (1997, 2001),

observations that identify the true outcome model by themselves are not available, so we

also consider an estimator in which there are no observations with both yTi and xi: Some

observations identify the misclassification model and others the observed outcome model,

but none identify both. We refer to this estimator as the “joint estimator without common

observations”.

Several other estimators for misclassified binary dependent variables have been proposed

and examining their performance would be an interesting extension to the evidence presented

below. Some papers consider point identification and estimation with panel data (Feng and

Hu, 2013) or in the presence of instruments (e.g. Hu, 2008; Lewbel, 2000). However, we

do not evaluate these estimators since we have neither panel data nor sufficiently credible

instruments. Similarly, some semi-parametric estimators have been proposed (e.g Hausman,

Abrevaya and Scott-Morton, 1998), but misspecification and misclassification are different

problems and we focus on the latter here. Another related line of literature builds on

Horowitz and Manski (1995) to examine bounds in the presence of contaminated sampling.

Most closely related to our approach is Molinari (2008), who derives tight bounds for models
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with misclassified discrete variables for a broad class of restrictions on the misclassification

process (see also Dominitz and Sherman, 2004; Kreider and Pepper, 2008, 2011). Evaluating

these approaches, or partial identification in general, is beyond the scope of this paper.

However, bounds are an attractive alternative in cases where one does not have enough prior

information to point identify the parameters of the model.

4.1 Performance When Misclassification is Conditionally Random

We apply the estimators to the matched survey data used in part 3. We begin by examining

their performance when misclassification is conditionally random by conducting Monte Carlo

simulations. In these simulations, we induce false positives and false negatives at the rate

actually observed in the real data, but misclassification is unrelated to X conditional on

yTi . We run 500 replications. For the Predicted Probabilities estimator, we obtain estimates

of the probabilities of misclassification (the first stage) from the same sample that we use

for the outcome model (the second stage). The joint estimators allow estimation with two

different samples with different information, so we split the sample in half randomly and use

the two halves for the two samples required for the joint estimators. With the exception of

the estimator that fixes α0 at 0, all estimators are consistent in this setting if the Probit

assumption holds in the matched data.

The results in table 7 show that the HAS-Probit greatly improves upon the uncorrected

Probit estimator in terms of bias (in columns 2 and 6) if one has estimates of α0 and α1.

Columns 4 and 8 use the “true” probabilities of misreporting which results in estimates

that have little bias (with the exception of the imprecise Maryland coefficient in the ACS).

Sometimes only inaccurate estimates may be available, such as the net underreporting rate

for α1 and 0 for α0. This means that the estimates of α0 and α1 are biased, but not too far off,

so it is useful to know whether using them still improves the results. The results in columns

3 and 7 give an example where biased estimates of the probabilities of misclassification affect

the slope coefficients.
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In our case, choosing α0 and α1 to be lower than the true probabilities leads to a partial

correction: the corrected slope estimates are between the estimates from the survey and

the matched data. They are still substantially closer to the estimates using well-measured

administrative data than with the error-ridden survey data, but it is unclear to what extent

this holds more generally. In our application, the estimated bias is small when the error

in the assumed α0 and α1 is small and is approximately proportional to this error. This

suggests that choosing α0 and α1 between 0 and their true values may lead to bias between

that of the naive Probit and the HAS Probit using the correct values of α0 and α1. However,

it is unclear whether this finding generalizes. Our estimates from the ACS and CPS by and

large support this conjecture, but also show that it is not always the case as it does not hold

for the imprecisely estimated Maryland coefficient.

Table 7: Comparing Estimators - Conditional Random Misreporting

ACS CPS

β̂ Percent Bias β̂ Percent Bias

Matched Standard α̃0 = 0 α̃0 = .024 Matched Standard α̃0 = 0 α̃0 = .033
Data Probit α̃1 = .19 α̃1 = .26 Data Probit α̃1 = .29 α̃1 = .39

(1) (2) (3) (4) (5) (6) (7) (8)

Poverty index -0.0060 -20.51% -11.12% 1.34% -0.0074 -32.47% -18.43% 3.30%
Age≥50 -0.4062 -22.15% -14.45% -2.30% -0.4297 -32.17% -20.20% 0.00%
Maryland -0.0187 -9.08% 15.22% 13.20% -0.3338 -33.15% -24.90% 5.84%

Note: Sample sizes: 5945 (ACS), 2791 (CPS) matched households, based on 500 replications. See notes
Table 1 and 2 for further details on the samples and MC design. All analyses include a constant term
(not reported). The conditional probabilities of misreporting in column 4 and 8 are based on the actual
probabilities; column 3 and 7 use the (expected) net under count as the probability of false negatives.

The results in table 7 underline that the HAS-Probit can yield substantial improvements

if misclassification is conditionally random and one constrains the probabilities of misclas-

sification based on outside information. However, we find that the HAS-Probit performs

poorly in our application to real data when these probabilities are left unconstrained. We

do not report the results from the linked data, since they are too far off to be informative,

but we examined the problem further using simulated data and the ACS public use files.7

7All results are available upon request.
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In summary, we find that the estimator works well when the model is correctly specified and

does not seem to be particularly sensitive to misspecification of the functional form of ε,

such as skewness and heavy or light tails. However, we find that the estimator is sensitive to

violations of the assumption that ε is independent of the covariates. A possible explanation

is that if X and ε are related, there are surprisingly many or few ones at certain values of

X. The estimator explains this as misclassification. Thus, it is likely to pick up spurious

misclassification, which leads to inconsistent estimates of α0 and α1. If the probabilities of

misclassification are poorly estimated, the estimates of the slope coefficients can be severely

off. Knowing these probabilities from outside information fixes this fragility in our applica-

tion, and greatly reduces the bias even if the estimates of α0 and α1 are biased as in the MC

study using the linked data.

Results from the estimators that remain consistent under correlated misclassification in

the same MC setup are as expected, so we do not present them. In conclusion, our results

suggest that if misclassification is conditionally random, estimators that are able to account

for misclassification can greatly improve the estimates in terms of bias. However, unless one

has great faith that the underlying binary choice model is correctly specified, it is useful

to have external estimates of the probabilities of misclassification (even if they are slightly

inaccurate). Otherwise, since the error rates are hard to estimate, their bias and imprecision

can lead to severe bias in the slope coefficients.

4.2 PerformanceWhenMisclassification is Not Conditionally Ran-

dom

The assumption that misclassification is conditionally random clearly fails in our data, which

raises the question of how the estimators perform when this key assumption is violated

and whether one can still obtain consistent estimates from the observed data using other

methods. Our matched data contains both the “true” dependent variable yT as well as the

misreported indicator y. This enables us to compare estimates of the true coefficients using
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the administrative dependent variable to inconsistent coefficient estimates from the survey

reports that suffer from misclassification.

Table 8: Comparing Estimators - Correlated Misreporting

ACS CPS

MatchedStandard HAS α̃0 = 0 α̃0 = .024MatchedStandard HAS α̃0 = 0 α̃0 = .033
Data Probit Probit α̃1 = .19 α̃1 = .26 Data Probit Probit α̃1 = .29 α̃1 = .39

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Poverty index -0.0060 -0.0071 -0.0188 -0.0082 -0.0094 -0.0074 -0.0083 -0.0082 -0.0107 -0.0146
(0.0004) (0.0005) (0.0019) (0.0006) (0.0007) (0.0005) (0.0006) (0.0006) (0.0008) (0.0015)

Age≥50 -0.4062 -0.4167 -0.8267 -0.4622 -0.5287 -0.4297 -0.3992 -0.3879 -0.4739 -0.6270
(0.0512) (0.0543) (0.1097) (0.0599) (0.0713) (0.0614) (0.0682) (0.0679) (0.0812) (0.1170)

Maryland -0.0187 -0.0978 -0.3187 -0.1140 -0.1238 -0.3338 -0.3189 -0.3058 -0.3604 -0.5760
(0.0548) (0.0582) (0.1137) (0.0640) (0.0757) (0.0736) (0.0808) (0.0805) (0.0977) (0.1655)

α̂0 0.0000 0.0011
(0.0000) (0.0000)

α̂1 0.6114 0.0000
(0.0233) (0.0000)

Note: Sample sizes: 5945 (ACS), 2791 (CPS), SEs in parentheses. All analyses conducted using household weights
adjusted for PIK probability. All analyses include a constant term (not reported). The conditional probabilities of
misreporting in columns 5 and 10 are based on the actual probabilities and column 4 and 9 use the (expected) net
undercount as the false negative probability.

We find that all estimators that are consistent only under conditionally random misclassi-

fication fare poorly if misclassification is related to the covariates. Table 8 shows that in both

surveys, all estimates are further from the true coefficients than the naive estimates. This

strongly suggests that one should be cautious with the assumption that misclassification is

conditionally independent of the covariates.

Tables 9 and 10 present the results from the estimators that are consistent if misclas-

sification is related to the covariates: the predicted probabilities estimator from Bollinger

and David (1997) and the two joint estimators. The last two rows contain two measures to

evaluate their performance. “Weighted Distance” gives the average distance to the coeffi-

cients from the matched data weighted by the inverse of the variance matrix of the estimates

from the matched data. We only use the variance matrix from the matched data in order to

avoid dependence on differences in the efficiency of the estimators. The number in the last

row is the F-Statistic of the coefficients from the matched data using the variance matrix

of the estimator in that column. This can be interpreted as a measure of efficiency with
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Table 9: Comparing Estimators - Correlated Misreporting, ACS

JE 1: no JE 2:
Survey Matched Pred. common common
Data Data Prob. observations observations

(1) (2) (3) (4) (5)

Poverty index -0.0071 -0.0060 -0.0059 -0.0076 -0.0063
(0.0005) (0.0004) (0.0006) (0.0013) (0.0005)

Age≥50 -0.4167 -0.4062 -0.3950 -0.5086 -0.3660
(0.0543) (0.0512) (0.0530) (0.1229) (0.0615)

Maryland -0.0978 -0.0187 0.0050 0.1322 -0.0366
(0.0582) (0.0548) (0.0574) (0.1387) (0.0662)

Constant 0.0686 0.0987 0.1199 0.3088 0.1568
(0.0605) (0.0583) (0.0721) (0.1489) (0.0701)

Weighted Distance 15.672 0 0.694 0.779
Precision 230.824 272.011 220.563 66.650 209.915

Note: Sample size 5945 matched households. The first stage model for (3)-(5) includes age≥50,
a MD dummy, the poverty index and its square. The model for false negatives also includes
a cubic term in poverty. SEs for (3) are bootstrapped to account for the estimated first stage
parameters. All analyses conducted using household weights adjusted for match probability.
A mistake prevented the distance statistic for column (4) from being disclosed.

higher values being better. We use the coefficient from the matched data rather than the

estimates in each column in order to avoid confounding efficiency with estimates that are

larger in absolute value.8 The measures of efficiency of the joint estimators are not directly

comparable to the other estimators, since the sample definitions differ.

The results show that all three estimators work well and thereby underline that a model

of misclassification can serve as a substitute for “clean” data. The joint estimator without

common observations is less efficient than the joint estimator with common observations,

but we cannot reject the hypothesis that it is consistent. Its lack of precision suggests that

it may only be an attractive option in large data sets. Both the predicted probabilities

estimator and the joint estimator with common observations work extremely well. The

predicted probabilities estimator fares a little better in our applications, but at least in

8As any summary measure, these two statistics measure a particular aspect of the performance and may not
capture other aspects well. For example, the first statistic is not a test of equality, but is the χ2

4 statistic
of a test that the coefficients from the matched data are equal to the values in a given column. The test
statistic from a test of equality may rank the estimators differently.
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Table 10: Comparing Estimators - Correlated Misreporting, CPS

JE 1: no JE 2:
Survey Matched Pred. common common
Data Data Prob. observations observations

(1) (2) (3) (4) (5)

Poverty index -0.0083 -0.0074 -0.0070 -0.0044 -0.0070
(0.0006) (0.0005) (0.0007) (0.0028) (0.0008)

Age≥50 -0.3992 -0.4297 -0.4109 -0.3368 -0.3693
(0.0682) (0.0614) (0.0616) (0.1775) (0.0777)

Maryland -0.3189 -0.3338 -0.3733 -0.4076 -0.3347
(0.0808) (0.0736) (0.0819) (0.1958) (0.0931)

Constant 0.1892 0.4108 0.3688 0.1741 0.3454
(0.0735) (0.0723) (0.0836) (0.2462) (0.0998)

Weighted Distance 27.197 0 0.318 0.481
Precision 148.198 189.154 153.357 37.682 131.888

Note: Sample size 2791 matched households. The first stage model for (3)-(5) includes age≥50,
a MD dummy and the poverty index. SEs for (3) are bootstrapped to account for the estimated
first stage parameters. All analyses conducted using household weights adjusted for match
probability. A mistake prevented the distance statistic for column (4) from being disclosed.

terms of efficiency, we have stacked the deck in its favor given that we split the sample for

the joint estimator. One would expect the joint estimator to be more efficient, as it is the

maximum likelihood estimator.9 The main drawback of the joint estimator with common

observations is that it requires observations that identify the outcome model because they

contain both yTi and xi. Such observations are rarely available. When they are available,

one may prefer to use only these validated observations to obtain consistent, but inefficient

estimates of the outcome model rather than also using the unvalidated observations in the

efficient, but potentially misspecified full maximum likelihood joint estimator. On the other

hand, the predicted probabilities estimator does not require the linked data to be available.

It only requires consistent estimates of the parameters of the misclassification model, which

can often be obtained from other studies, as in Bollinger and David (1997).

9The results for the joint estimator with common observations support this, as the SEs are only slightly
larger than those of the predicted probabilities estimator, despite the fact that the joint estimator only
uses half of the sample to estimate the outcome model. The SEs from the joint estimator without common
observations are surprisingly large compared to the predicted probabilities estimator.
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An important concern for these estimators besides bias and efficiency is their robustness

to misspecification. One will usually not be able to assess whether one has actually re-

duced bias by using a correction for misclassification since validation data are not generally

available. The results from applying estimators that are only consistent if misclassification

is conditionally random indicate that increased bias is certainly possible if the model of

misclassification is wrong. Informal evidence from using subsamples (such as one of the

two states) to identify the misclassification model suggest that neither of the estimators is

particularly sensitive to minor misspecification, but the joint estimator with common ob-

servations seems more robust than the predicted probabilities estimator. In the MC study

where misclassification is conditionally random, both joint estimators produced estimates

that were closer to the “true” estimates from the matched data than the uncorrected Probit

estimates. The predicted probabilities estimator, on the other hand, produced estimates

that were further off than the survey estimates and fared worse in terms of mean squared

error than the joint estimator with common observations. This suggests that the predicted

probabilities estimator may be sensitive to the inclusion of irrelevant variables in the first

stage, which can usually be avoided by standard t- or F-tests.

The results above show that the information obtained from validation studies can im-

prove survey based estimates considerably, but validation studies are costly. This raises the

question of how much one loses from correcting estimates based on validation data from

previous years, a subset of the population or even a different survey. Nothing is lost if the

misclassification models are the same in the two data sets, but if they are slightly different

the loss depends on the robustness to misspecification of the misclassification model. We

examine this issue by estimating the misclassification model on the IL sample of the ACS

and using it to see how well it corrects food stamp take up in MD. The misclassification

models are statistically different in the two states, but qualitatively similar, so one may

be tempted to use them to correct estimates if validation data are only available for some

states. The results are in line with our previous findings: The joint estimator with common
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observations performs best according to our measure of both bias and efficiency. The joint

estimator without common observations still suffers from a lack of precision. The predicted

probabilities estimator works well in terms of estimated bias (as measured by the distance

metric defined above) compared to an uncorrected Probit, but contrary to the previous case

it performs worse than the joint estimator with common observations. All estimators work

better than the naive survey estimates in terms of the distance metric used above, so if sim-

ilar data have been validated or parameter estimates from similar data are available, using

them to correct the survey coefficients may be worth trying.10

5 Conclusion

In order to assess what can be learned from data with misclassification, we analyze common

binary choice estimators when the dependent variable is subject to misclassification and

evaluate the performance of several estimators that account for misclassification. In the first

part of the paper, we derive analytic results for the (asymptotic) bias due to misclassification

when misclassification depends on the covariates in arbitrary ways. We do so for the linear

probability model and the Probit model. We show that there is always bias and describe the

determinants of its size and direction. For the linear probability model, the bias formula is

tractable and allows for simple corrections if the mean of the covariates among false positives

and false negatives is available. For the Probit model, the asymptotic bias consists of four

components. We derive formulas for three components, but there is no closed form solution

for the last component, which is the effect of misclassification on the higher order moments

of the error distribution. Nonetheless, the results imply a tendency for the asymptotic bias

to be in the opposite direction of the sign of the coefficient. With additional information,

the formulas allow an assessment of whether this tendency is likely to hold in the case at

10We also correct estimates of food stamp take-up in the ACS using the misclassification model we observe
in the CPS and vice versa to see how extrapolating from a different survey works. The results, which are
available upon request, underline that the joint estimator with common observations is more efficient than
the other two estimators, but do not provide conclusive evidence on their performance.
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hand. For example, the covariance of X among the misclassified observations plays a key

role in the asymptotic bias, so additional information on it helps to assess the size of the bias

and thereby the robustness of substantive conclusions. If misclassification is conditionally

random, only the probabilities of misclassification are required to obtain the exact bias in the

linear probability model and an approximation to the asymptotic bias in the Probit model.

We then show that the bias can be substantial and that our analytic results are useful in

practice by using simulations and models of food stamp receipt using two unique validation

data sets. The formulas describe the estimated bias in the survey data accurately for the

linear probability model and approximately for the Probit model. For example, in our

application, the correlation with covariates reduces the bias, which explains why Meyer,

Goerge and Mittag (2015) find relatively small bias. If misclassification is conditionally

random, the inconsistent estimates are attenuated and coefficient ratios as well as scaled

up marginal effects are informative about the true coefficients. However, the estimates

can be misleading if misclassification is related to the covariates. If misclassification is not

conditionally random, there still is a robust tendency for the estimates to be attenuated, but

it can be overturned if misclassification is strongly related to the covariates. Thus, if one can

rule out these extreme cases, one can still infer the signs of the coefficients from the data

with misclassification.

Finally, we examine the performance of six estimators that account for misclassification.

If misclassification is conditionally random, the HAS Probit with the probabilities of mis-

classification estimated from outside sources works well. Estimates of the error rates may be

available from validation data or comparisons to administrative aggregates and they improve

estimates in our application even when they are estimated with error. Without such esti-

mates, the HAS Probit does not work well in our application to real data, likely because it is

sensitive to violations of independence between X and the error term. The estimators that

assume conditionally random misclassification can easily be further from the true coefficients

than the naive estimator when this assumption fails. However, we show that even if misclas-
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sification is not conditionally random, it is still possible to obtain consistent estimates from

the observed data. This situation requires additional information on the misclassification

model, such as parameter estimates from which one can predict the probabilities of misclas-

sification. Among the estimators we evaluate, the joint estimator with common observations

is not only the efficient estimator, but it also performs best in our applications. However,

it is often infeasible in practice and our results suggest that the predicted probabilities esti-

mator is an attractive alternative. Neither estimator seems particularly sensitive to modest

misspecification of the misclassification model. This result suggests that if validation data

are not available, using approximate models may still improve the estimates or provide a

robustness check. One may often be able to obtain an approximate model of misclassification

from validation studies in other samples or time periods or based on more detailed aggregate

tabulations.

Overall, our results show that misclassification of the dependent variable can lead to

severe bias and standard results from linear models do not carry over. However, if misclas-

sification is conditionally random or additional information on the misclassification model

is available, the formulas and estimators in this paper can still be used to draw conclusions

from data that are subject to misclassification, or even to obtain consistent estimates. This

result underlines the value of validation data to understand the nature of misclassification

and its effects, particularly since we find that corrections based on incorrect assumptions can

also increase bias. Consequently, when little is known about the misclassification process,

one may prefer to use our results to assess the robustness of substantive conclusions.
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Appendix A: Derivation of Bias in the Linear Probabil-

ity Model

Equation (5) follows from equation (3) and the fact that the measurement error, u, only

takes three values (-1,0,1):

δ̂ = (X ′X)−1X ′u = (X ′X)−1

N∑
i=1

xiui

= (X ′X)−1

 ∑
i s.t. yi=1
&yTi =0

xi · 1 +
∑

i s.t. yi=yTi

xi · 0 +
∑

i s.t. yi=0
&yTi =1

xi · (−1)


= (X ′X)−1(NFP x̄FP −NFN x̄FN)

= N(X ′X)−1

(
NFP

N
x̄FP − NFN

N
x̄FN

)

We also consider the special case when the conditional probabilities of misclassification

are constants as in Hausman, Abrevaya and Scott-Morton (1998), i.e. when

Pr(yi = 1|yTi = 0) = α0i = α0

Pr(yi = 0|yTi = 1) = α1i = α1

∀i

By the assumptions of the linear probability model Pr(yTi = 1|X) = x′
iβ

LPM and Pr(yTi =

0|X) = 1 − x′
iβ

LPM , so that the probability mass function of the measurement error, U ,

conditional on X is

Pr(U = ui|X = xi) =


Pr(yi = 1|yTi = 0) · Pr(yTi = 0|X) = α0(1− x′

iβ
LPM) if ui = 1

1− α0 + (α0 − α1)x
′
iβ

LPM if ui = 0

Pr(yi = 0|yTi = 1) · Pr(yTi = 1|X) = α1x
′
iβ

LPM if ui = −1

where the probability for ui = 0 follows immediately from the fact that the probabilities
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have to sum to 1. Consequently, the conditional expectation of the measurement error is

E(ui|X = xi) = 1 · [α0(1− x′
iβ

LPM)] + 0 · [1− α0 + (α0 − α1)x
′
iβ

LPM ]− 1 · [α1x
′
iβ

LPM ]

= α0 − (α0 + α1)x
′
iβ

LPM

Assuming that X is non-stochastic,11 this implies that the bias, E(δ̂), is

E(δ̂) = E(X ′X)−1(X ′u)

= (X ′X)−1E(X ′u)

= (X ′X)−1
∑
i

x′
iE(ui|xi)

= (X ′X)−1
∑
i

x′
i(α0 − (α0 + α1)x

′
iβ

LPM)

= (X ′X)−1
∑
i

x′
iα0 − (α0 + α1)(X

′X)−1
∑
i

xix
′
iβ

LPM

= (X ′X)−1X ′α0 − (α0 + α1)(X
′X)−1(X ′X)βLPM

= (α0, 0, . . . , 0)
′ − (α0 + α1)β

LPM

The first term is the coefficient vector from a regression of a constant, α0, on X, so the

intercept will be equal to α0 and all other coefficients will be zero. The expectation of the

biased coefficient vector is E( ˆ̃βLPM) = βLPM + E(δ̂). Consequently, the expectation of the

(biased) intercept is

E( ˆ̃βLPM
0 ) = α0 + (1− α0 − α1)β

LPM
0

and the expectation of the (biased) slope parameters is

E( ˆ̃βLPM
1...k ) = (1− α0 − α1)β

LPM
1...k

11The extension to stochastic X follows from the law of iterated expectation.
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Appendix B: Likelihood of the Joint Estimators

The setup in section 4 implies a system of 3 equations, two that describe misclassification

and an outcome equation:

Pr(yi|yTi = 0, xFP
i ) =

[
F FP (xFP ′

i γFP )
]yi

+
[
1− F FP (xFP ′

i γFP )
]1−yi

Pr(yi|yTi = 1, xFN
i ) =

[
F FN(xFN ′

i γFN)
]yi

+
[
1− F FN(xFN ′

i γFN)
]1−yi

(18)

Pr(yTi |xi) = Φ(x′
iβ)

yTi + [1− Φ(x′
iβ)]

1−yTi

The first equation gives the model for false positives, which depend on covariates XFP

through the parameters γFP and the link function F FP . Similarly, the second equation gives

the model for false negatives and the third equation the model for the true outcome of inter-

est, which depends on the parameters of interest, β. We assume that the misclassification

models are Probit models, i.e. F FP and F FN are standard normal cumulative distribution

functions. This assumption yields a fully specified parametric system of equations that can

be estimated by maximum likelihood.

As discussed in section 4, the sample can be divided into three disjoint subsamples

according to whether an observation contains
[
yi, y

T
i , x

FP
i , xFN

i

]
,
[
yi, xi, x

FP
i , xFN

i

]
or both.

The first subsample, S1 contains observations that are in the validation data, but not in the

data used to identify the outcome model and thus contains (yi, y
T
i , x

FP
i , xFN

i ). This sample

identifies the parameters of the misclassification equations, but not the outcome equation.

The second subsample, S2, contains all observations that have been validated and includes

all variables in the outcome model, so that it contains (yi, y
T
i , xi, x

FP
i , xFN

i ). This sample

identifies all parameters. The third subsample, S3, contains the observations used to estimate

the outcome model that have not been validated. Thus, it contains (yi, xi, x
FP
i , xFN

i ), which

by itself identifies none of the parameters. Frequently, one of the first two samples will

be empty. For the joint estimator with common observations, S1 is empty; for the joint

estimator with common observations, S2 is empty, as in Bollinger and David (1997).
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Since the subsamples are disjoint and independent, the log-likelihood of the entire sam-

ple is the sum of the three log-likelihoods of the subsamples. Thus, it depends on three

components:

ℓ(y, yT , x, xFP , xFN ; β, γFP , γFN) =
∑
iϵS1

ℓS1
i (yi, y

T
i , x

FP
i , xFN

i ; γFP , γFN)+

∑
iϵS2

ℓS2
i (yi, y

T
i , xi, x

FP
i , xFN

i ; β, γFP , γFN)+ (19)

∑
iϵS3

ℓS3
i (yi, xi, x

FP
i , xFN

i ; β, γFP , γFN)

Equation (18) and the assumption that the error terms in all three equations are indepen-

dent draws from standard normal distributions imply the following (conditional) probabilities

Pr(yi|yTi = 0, xFP
i ) =

[
Φ(xFP ′

i γFP )
]yi

+
[
1− Φ(xFP ′

i γFP )
]1−yi

Pr(yi|yTi = 1, xFN
i ) =

[
Φ(xFN ′

i γFN)
]yi

+
[
1− Φ(xFN ′

i γFN)
]1−yi

(20)

Pr(yTi |xi) = Φ(x′
iβ)

yTi + [1− Φ(x′
iβ)]

1−yTi

The first probability is the likelihood contribution of an observation in S1 with yTi = 0,

while the second probability is the likelihood contribution of an observation in S1 with

yTi = 1. Consequently, the likelihood contribution of an observation from S1 is

ℓS1
i (yi, y

T
i , x

FP
i , xFN

i ; γFP , γFN) =(1− yTi )[yi lnΦ(x
FP ′
i γFP ) + (1− yi) lnΦ(−xFP ′

i γFP )]+

yTi [(1− yi) lnΦ(x
FN ′
i γFN) + yi lnΦ(−xFN ′

i γFN)]

This is the sum of the likelihoods of Probit models for false positives and false negatives.

The likelihood contribution of an observation in sample S2 is the probability of the

observed combination of yi and yTi , which is

Pr(yi, y
T
i |xi, x

FP
i , xFN

i ) =

{
Pr(yi|yTi = 0, xFP

i ) Pr(yTi = 0|xi) if yTi = 0

Pr(yi|yTi = 1, xFN
i ) Pr(yTi = 1|xi) if yTi = 1
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Using the probabilities from (20) yields the likelihood contribution of an observation from

sample S2:

ℓS2
i (yi, y

T
i , x, x

FP
i , xFN

i ; β, γFP , γFN) =

(1− yTi ) ln
(
[yiΦ(x

FP ′
i γFP ) + (1− yi)Φ(−xFP ′

i γFP )]Φ(−x′
iβ)

)
+

yTi ln
(
[(1− yi)Φ(x

FN ′
i γFN) + yiΦ(−xFN ′

i γFN)]Φ(x′
iβ)

)
Equation (20) defines the probabilities of false positives as α0i = Φ(xFP ′

i γFP ) and of false

negatives as α1i = Φ(xFN ′
i γFN). Using these probabilities of misclassification in equation

(17) yields the contribution of an observation from S3:

ℓS3
i (yi, xi, x

FP
i , xFN

i ; β, γFP , γFN) =

yi ln[Φ(x
FP ′
i γFP ) + (1− Φ(xFP ′

i γFP )− Φ(xFN ′
i γFN))Φ(x′

iβ)]+

(1− yi) ln[1− Φ(xFP ′
i γFP )− (1− Φ(xFP ′

i γFP )− Φ(xFN ′
i γFN))Φ(x′

iβ)]

Using the three likelihood contributions ℓS1
i , ℓS2

i and ℓS3
i in equation (19) and maximizing

it with respect to (β, γFP , γFN) yields consistent estimates of the three parameter vectors by

the standard arguments for the consistency of maximum likelihood. Standard errors of all

parameters can be obtained as usual. The joint estimator with common observations used

above assumes that S1 is empty, so the log-likelihood reduces to

ℓJE1(y, yT , x, xFP , xFN ; β, γFP , γFN) =∑
iϵS2

[
(1− yTi ) ln

(
[yiΦ(x

FP ′
i γFP ) + (1− yi)Φ(−xFP ′

i γFP )]Φ(−x′
iβ)

)
+

yTi ln
(
[(1− yi)Φ(x

FN ′
i γFN) + yiΦ(−xFN ′

i γFN)]Φ(x′
iβ)

) ]
+∑

iϵS3

[
yi ln[Φ(x

FP ′
i γFP ) + (1− Φ(xFP ′

i γFP )− Φ(xFN ′
i γFN))Φ(x′

iβ)]+

(1− yi) ln[1− Φ(xFP ′
i γFP )− (1− Φ(xFP ′

i γFP )− Φ(xFN ′
i γFN))Φ(x′

iβ)]
]

The second joint estimator we use above, the joint estimator without common observa-
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tions, assumes that S2 is empty, so the log-likelihood reduces to

ℓJE2(y, yT , x, xFP , xFN ; β, γFP , γFN) =∑
iϵS1

[
(1− yTi )[yi lnΦ(x

FP ′
i γFP ) + (1− yi) lnΦ(−xFP ′

i γFP )]+

yTi [(1− yi) lnΦ(x
FN ′
i γFN) + yi lnΦ(−xFN ′

i γFN)]
]
+∑

iϵS3

[
yi ln[Φ(x

FP ′
i γFP ) + (1− Φ(xFP ′

i γFP )− Φ(xFN ′
i γFN))Φ(x′

iβ)]+

(1− yi) ln[1− Φ(xFP ′
i γFP )− (1− Φ(xFP ′

i γFP )− Φ(xFN ′
i γFN))Φ(x′

iβ)]
]

Note that the likelihood contribution of S2 can be re-written as the sum of the likeli-

hood contribution if the observation were in sample S1 and the likelihood contribution to a

standard probit likelihood:

ℓS2
i (yi, y

T
i , x, x

FP
i , xFN

i ; β, γFP , γFN) =ℓS1
i (yi, y

T
i , x

FP
i , xFN

i ; γFP , γFN)+

yTi lnΦ(x′
iβ) + (1− yTi ) lnΦ(−x′

iβ)

This can be used to re-write the log-likelihood function as

ℓ(y, yT , x, xFP , xFN ; β, γFP , γFN) =
∑

iϵS1∪S2

ℓS1
i (yi, y

T
i , x

FP
i , xFN

i ; γFP , γFN)+

∑
iϵS2

ℓPi (y
T
i , xi; β) +

∑
iϵS3

ℓS3
i (yi, xi, x

FP
i , xFN

i ; β, γFP , γFN)

where ℓP is the log-likelihood function of a standard Probit model. This shows more clearly

which observations contribute to the identification of the parameters. In particular, it shows

the value of observations in S2, because in addition to the likelihood contribution of an obser-

vation in S1, they add a term that directly identifies the parameters of the outcome model,

β. It also shows that observations in S3 contribute to the identification of the parameters of

false positives and false negatives even though these observations only contain information

on the observed dependent variable.
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Web Appendix: Further Analysis of the Higher Order

Bias

We have shown that the bias in the Probit model depends on four components: two com-

ponents due to the linear projection, a rescaling bias, and bias due to misspecification of

the higher order moments of the distribution function. The bias due to misspecification of

the error distribution is harder to assess than the other components. If one has enough

information about Fε̃|X to take random draws from it, one can simulate the exact bias or

even obtain an exact solution of (16). In practice, however, such detailed information will

rarely be available, so we discuss some factors that influence the size and direction of the

bias. They may allow the researcher to informally assess whether this bias is likely to be

small, which justifies considering β̄ − β a good approximation to the full bias.

Given that the left hand side of equation (16) is the derivative of a Probit likelihood,

which is globally concave in b, the left hand side of each equation in (16) crosses 0 only

once and does so from above. In the absence of bias due to functional form misspecification,

it does so at b = β̄. In the univariate case, this implies that if the left hand side of (16)

is positive at this point, the additional bias will be positive, while the additional bias will

be negative if the left hand side is negative at b = β̄. In the multivariate case, this can

in principle be offset for some, but not all coefficients by the fact that the bias “spreads”

between coefficients. For the multivariate case, note that

fX(xi)
ϕ(x′

ib)

Φ(x′
ib)(1− Φ(x′

ib))
> 0 (21)

so (16) can be interpreted as a weighted average of x′
i

[
Fε̃|X=xi

(x′
iβ̄)− Φ(x′

iβ̄)
]
with the

weights given by (21). Consequently, observations for which sign(xi) = sign(Fε̃|X=xi
(x′

iβ̄)−

Φ(x′
iβ̄)) tend to cause a positive bias in the coefficient on x, while observations with opposing

signs tend to cause a negative bias. The weight function has a minimum at 0 and increases
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in either direction, so differences at more extreme values of x′b have a larger impact. Larger

values of x also tend to make x′
i

[
Fε̃|X=xi

(x′
iβ̄)− Φ(x′

iβ̄)
]
larger, because x enters it multi-

plicatively. The expression at each value of x is weighted by its density fX(x), so differences

at frequent values of x have a larger impact. In summary, one can get an idea of the direction

of the bias if one knows how Fε̃i and Φ differ. If the former is larger in regions where the

sample density of x is high, |x′b| is high or |x| is large, the bias will tend to be positive if x

is positive in this region and negative if x is negative in this region.

However, knowing more about the conditions under which the higher order bias is small

could allow researchers to characterize the bias using the more tractable formulas and scal-

ing up marginal effects if misclassification is conditionally random. Thus, we additionally

conducted several simulation exercises to further examine conditions under which the higher

order bias is small. Results are available upon request. While the regularities we find are

in line with our analytic results, the simulations are just case studies, so they may not

generalize. We find that the higher order bias tends to be small, but can become large if

misclassification depends heavily on ε or the true value of y, for example because the models

for false positives and false negatives differ. Both are likely to induce asymetries (such as

skewness) in Fε̃, which creates differences between Fε̃|X and Φ that are unlikely to even out

over the sample.

51


